Python 图形化编程实例

# coding=utf-8
import Tkinter as tk
import time


def processButton():

    if v1.get() == 1:
        #print text.get("0.0", "end")
       # t= text.get("0.0", "2.0")
        #print t
        window2 = tk.Tk()  # 创建一个窗口
        window2.title("result")  # 设置标题
        text2 = tk.Text(window2)
        text2.pack()
        text2.insert('end','T1\n')

        text2.insert('end', 'R1')
        #text2.insert('end',t)
    else:
        t=text.get("0.0", "end")
        window2 = tk.Tk()  # 创建一个窗口
        window2.title("result")  # 设置标题
        text2 = tk.Text(window2)
        text2.pack()
        time.sleep(15)
        text2.insert('end', 'T1'
+'\nR2'
+'\nT2'
+'\nR2')
window = tk.Tk()  # 创建一个窗口
window.title("Demo")  # 设置标题
frame1 = tk.Frame(window)  # 创建一个框架
frame1.pack()  # 将框架frame1放置在window中
text = tk.Text(window)
text.pack()
v1 =tk. IntVar()
rbDanju = tk.Radiobutton(frame1, text="单句分析",
                            variable=v1, value=1,
                            )
rbPiliang =tk. Radiobutton(frame1, text="批量分析",
                               variable=v1, value=2,
                               )
rbFenxi = tk.Button(frame1, text="分析", command = processButton)
        # grid布局
rbDanju.grid(row=1, column=1)
rbPiliang.grid(row=1, column=2)
rbFenxi.grid(row=1,column=3)
frame2 =tk. Frame(window)  # 创建框架frame2
frame2.pack()  # 将frame2放置在window中
        # 创建消息
l1=tk.Label(frame2, text="单句分析只分析文本第一行",justify='left')
        # grid布局
l1.grid(sticky=tk.E)
        # 监测事件直到window被关闭
window.mainloop()
v1 =tk. IntVar()
rbDanju = tk.Radiobutton(frame1, text="单句分析",
                            variable=v1, value=1,
                            )
rbPiliang =tk. Radiobutton(frame1, text="批量分析",
                               variable=v1, value=2,
                               )
rbFenxi = tk.Button(frame1, text="分析", command = processButton)
        # grid布局
rbDanju.grid(row=1, column=1)
rbPiliang.grid(row=1, column=2)
rbFenxi.grid(row=1,column=3)
frame2 =tk. Frame(window)  # 创建框架frame2
frame2.pack()  # 将frame2放置在window中
        # 创建消息
l1=tk.Label(frame2, text="单句分析只分析文本第一行",justify='left')
        # grid布局
l1.grid(sticky=tk.E)
        # 监测事件直到window被关闭
window.mainloop()


图形化界面:
这里写图片描述
这里写图片描述
这里写图片描述

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Python是一种非常流行的编程语言,被广泛用于数据科学领域。它提供了许多库和工具,使数据分析和可视化变得更加简单和方便。下面列举几个Python数据分析和可视化实例的源代码: 1. 使用Matplotlib库绘制简单的折线图: ```python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.plot(x, y) plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Simple Line Graph') plt.show() ``` 2. 使用Seaborn库绘制带有标签的散点图: ```python import seaborn as sns import pandas as pd df = pd.read_csv('data.csv', delimiter=',') sns.scatterplot(x='x_axis_data', y='y_axis_data', hue='label_data', data=df) plt.title('Labelled Scatterplot') plt.show() ``` 3. 使用Pandas库绘制柱状图: ```python import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('data.csv', delimiter=',') df.plot(kind='bar', x='categories', y='values') plt.title('Bar Chart') plt.xlabel('Categories') plt.ylabel('Values') plt.show() ``` 以上三个例子仅是Python数据分析和可视化中的冰山一角,实际上还有很多其他的技术和工具可以应用到数据的可视化中。通过这些可视化的方式,能够更直观地展示数据,帮助我们更好地了解和分析数据,为我们制定决策提供更准确的依据。 ### 回答2: Python数据分析可视化是目前常见的数据分析方法之一,通过将数据用图表、图形等形式展示出来,可以更加直观地了解数据的特点、趋势和异常情况等。 对于Python数据分析可视化实例可以参考如下代码: 首先导入所需的库 ```python import matplotlib.pyplot as plt import pandas as pd import seaborn as sns ``` 然后读取数据 ```python df = pd.read_csv('data.csv') ``` 接下来通过matplotlib绘制散点图 ```python plt.scatter(df['x'], df['y']) plt.title('Scatter Plot') plt.xlabel('x') plt.ylabel('y') plt.show() ``` 在此基础上进行可视化分析,比如加入颜色和规格化等信息 ```python sns.scatterplot(df['x'], df['y'], hue=df['color'], style=df['symbol'], s=df['size']) plt.title('Scatter Plot') plt.xlabel('x') plt.ylabel('y') plt.show() ``` 使用seaborn实现这样的代码可以更加灵活直观地展示数据分析结果,让人们可以快速将数据分析思路转化为可视化结果。 综上,Python数据分析可视化实例可以通过利用常见的库和工具进行代码实现,这不仅简化了数据分析的流程,也让数据分析结果得到更加直观清晰的展示。 ### 回答3: Python数据分析可视化实例源码是指采用Python语言编写的数据分析程序,并且具有可视化效果。这些源码可以通过开源社区、GitHub等途径获取,也可以在机器学习和数据分析相关的书籍中找到。下面以Python数据分析常用的matplotlib库为例,简单介绍其中的源码: 一、散点图 散点图是一种用于研究两个变量之间关系的图形。在Python中,使用matplotlib库中的scatter函数可以绘制散点图。下面是一个简单的示例代码: import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] plt.scatter(x, y) plt.show() 该代码可以生成一张包含5个散点的散点图。 二、折线图 折线图是一种用于表示连续数据的图形,它是一条或多条曲线沿着水平轴绘制,其中横坐标通常表示时间或其他连续变量。在Python中,使用matplotlib库中的plot函数可以绘制折线图。下面是一个简单的示例代码: import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] plt.plot(x, y) plt.show() 该代码可以生成一张包含5个点的折线图。 三、直方图 直方图是一种用于表示频率分布的图形,通常用于展示数据的分布情况。在Python中,使用matplotlib库中的hist函数可以绘制直方图。下面是一个简单的示例代码: import matplotlib.pyplot as plt data = [1, 2, 3, 4, 5] plt.hist(data, bins=5) plt.show() 该代码可以生成一张包含5个条状图的直方图,每个条状图表示一个数据区间的数量。 以上三种数据可视化方式只是Python数据分析中的冰山一角,在实际应用中还有很多数据可视化技术,可以灵活运用,以更好地从数据中获取价值信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熊野君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值