张量网络

简单地介绍一下张量网络是什么,以及它有什么应用。
1. 张量(tensor)
张量网络中的张量,和微分几何和GR中的张量场并不完全相同。在微分几何中,一点处的张量是基于流形上该点的切空间的。一个(m,n)型张量是指将m个协变矢量(余切矢量,cotangent vector)和n个逆变矢量(切矢量,tangent vector)映射到数域上的多重线性映射。取定一组基,这个多重线性映射可以用一系列分量表示出来。这些分量当然和基的选取有关。在张量网络中,我们通常不会去作坐标变换,因此,任何一个具有n个指标的分量集合就称为一个张量。例如,christoffel符号在几何意义上不构成张量,但它是可以出现在张量网络中的。
2.量子力学里的张量
量子力学有一个基本假设,复合系统的Hilbert空间是其子系统Hilbert空间的张量积。因此,多体波函数天然就是一个张量。对于n体系统来说,它的波函数是一个n阶张量。当然,由于维数相同的线性空间是同构的,所以也可以把波函数看成一个矢量,这个矢量的维数是d^n。n体系统的哈密顿量是d^n维的矩阵,当然也可以看成一个(n,n)型的张量。单体算子可以看成2阶张量。两体算子可以看成d^2维的二阶张量,也可以看成维数为d的(2,2)型(四阶)张量。
量子力学中所有可观测量的平均值都可以写成内积,从矩阵的观点看这是二次型。如果波函数是一个张量的形式,算符也可以写成局域张量的求和,那么算符的平均值也可以看作这些张量的缩并的和。
3. 张量网络 (tensor network)
张量的基本运算包括线性运算、张量积、转置和缩并。当涉及的指标较少,缩并关系简单时我们常用抽象指标记号去作解析运算,例如在GR里。但是,当张量数目多,指标缩并关系复杂时,我们最好能用图形表示它们的缩并关系,这就是张量网络。在张量网络中,n阶张量由带n条外腿的圆圈(或方形、三角形等)表示,每条外腿代表一个指标。如果某两个张量的外腿连成一条线,就代表这两个张量的对应指标缩并。整个图形由张量、内腿(参与缩并的指标)和外腿(不参与缩并的指标)构成。整个图形所表示的张量的阶数就是其外腿的个数。例如,如果一个张量网络用来表示n体系统的波函数,那么它就有n条外腿。
4. why tensor networks?
对于量子多体系统,其一般波函数有d^n个分量,当粒子数较大时,这个数目是天文数字,电脑不可以存储。好在我们知道量子系统的基态一般具有两个性质:1. area law 2. exponential/algebraic decay of correlations.
首先,任何多体量子系统都可以选取其中L个连续的粒子构成子系统,而子系统与其他部分是有纠缠的。这个纠缠由子系统的约化密度矩阵的本征值刻画。把这些本征值按一定方式组合成一个数,就是纠缠熵(entanglement entropy),记为S。它刻画了这个长为L的子系统与其他部分的纠缠大小。对于一维系统来说,如果这个系统是gapped,那么它的基态具有如下性质:S有和L无关的上界;如果它是gapless,那么它的基态具有如下性质:S的上界和log L成正比。对于N维系统而言,取子系统为一个N维超正方体,边长为L,那么纠缠熵S的上界与这个正方体的表面积成正比,或者对于gapless系统而言,可以有log L的修正。以上只是对基态和低激发态说的,而凝聚态物理中我们一般也只关心基态和低激发态。对于Hilbert空间中的一般态,其纠缠熵符合volume law,要远远大于基态。
其次,统计物理表明,系统处在临界点(critical point)附近时,关联长度趋于无穷大,关联函数是按多项式递减的(例如L^(d-2+eta),eta是临界指数,称为反常维度);在系统为gapped的时候,关联函数是指数下降的(对应的临界指数称为dynamical critical exponent或者z)。
这些性质使得我们在选取系统的波函数时,不需要考虑大部分Hilbert空间的态,从而通过恰当的参数化,减少独立变量的个数。这种参数化是由tensor network描述的。换而言之,用tensor network表述的量子态能很好的符合系统基态的纠缠和关联性质,因此是很好的试验态。其独立参量个数一般只有O(n),甚至O(1)(当系统具有平移不变性时),这使得高效模拟成为可能。
5.MPS
矩阵乘积态(matrix product states,MPS)是最先被发现和使用的张量网络。它源于人们对密度矩阵重整化群(density matrix renormalization group,DMRG)的原理探究。DMRG是90年代White等人为了模拟量子多体系统提出的算法[1]。它被广泛使用,大获成功的同时,其算法的有效性却没有理论证明。同时,人们发现DMRG不能准确模拟gapless系统。直到00年代人们发现它本质上是使用MPS作为一维量子系统基态的试验态[2]。MPS的纠缠熵有上界,正好符合1维gapped系统的性质。因此在处理critical系统时就会出现一些问题,例如,只有短程行为是准确的(technically,这种现象被称为MPS引入了off-criticality,或者说引入了artifical correlation length)。现在,MPS被高效地用于无限大一维系统的基态和激发态的模拟中[3][4][5]。同时,对MPS取连续极限可以用它模拟量子场论的基态[6][19]。而笔者本人现在的工作是尽量实现用MPS模拟critical系统,实现对Conformal Field Theory的精确模拟。(这一工作已在会议中展示,文章in preparation)
6. PEPS
投影纠缠对态(projected entangled pair states,PEPS)是MPS在二维的拓展,它比MPS更难操纵,尽管获得了较大成功,但算法复杂度要比MPS高很多。二维系统有很多更有趣的物理性质,例如拓扑序、拓扑相变。PEPS可以用来研究这些性质。[7][8]
7.MERA
多尺度纠缠重整化试验态(multiscale entanglement renormalization ansatz,MERA)是一种一维量子系统基态的试验态。它具有log L的纠缠,符合一维临界系统的基态性质。而且MERA天然有尺度不变性(scale invariance),符合统计物理中对critical system的描述(critical point是重整化群流的不动点)[9][10]。MREA可以看成从直积态出发,按尺度逐层引入纠缠的过程。这一过程和holograhy的思想类似。MERA作为临界系统的试验态取得了极大成功,能够精确求解共形场论(conformal field theory,一种描述临界系统的场论),得到scaling operator的scaling dimension、conformal spin和operator product expansion [11]。并能构造具有正确fixed point的重整化群流[12][13]。高维的MERA也被发现并应用,例如2D MERA,branching MERA[14]。现在,MERA还被看成是实现AdS/CFT对偶的一种方式,成为一种全息对偶(holographic duality)的玩具模型[15][16]。MERA也被连续化为cMERA,因此可以用来模拟量子场论和共形场论[17][18]。
8.其他应用
除了模拟量子系统,tensor network还广泛运用于经典统计物理、量子化学和机器学习中。由于作者本人对其中的某些领域不熟悉,所以本文也止步于此。
9. 更新:最近的“张量网络与量子场论”会议上有很多非常精彩的进展。我将会稍后补充,敬请期待。
--Interested readers may want to refer to following literatures and references therein--
For general information, Arxiv: 1603.03039.
For specific details, please see below:
[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[2] U. Schollwoeck, Annals of Physics 326, 96 (2011)
[3] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)
[4] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)
[5] J. Haegeman etal, Phys. Rev. B 88, 075133 (2013)
[6] J. Haegeman etal, Phys.Rev.Lett.104:190405,2010
[7] S. Yang etal, Phys. Rev. Lett. 114, 106803 (2015)
[8] N. Schuch, Phys. Rev. Lett. 111, 090501 (2013)
[9] K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)
[10] Scaling and Renormalization in Statistical Physics, J. Cardy (Cambridge
University Press, 1996)
[11] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007), G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
[12] G. Evenbly, G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)
[13] G. Evenbly, G. Vidal, Phys. Rev. Lett. 115, 200401 (2015)
[14] G. Evenbly, G. Vidal, Phys. Rev. B 89, 235113 (2014)
[15] B. Swingle, Phys. Rev. D 86, 065007 (2012)
[16] B. Czech etal, arXiv:1512.01548
[17] J. Haegeman etal, Phys. Rev. Lett. 110, 100402 (2013)
[18] Q, Hu, G.Vidal, arXiv:1703.04798
[19] M. Ganahl etal, arXiv:1611.03779
Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning algo- rithms typically scale exponentially with data volume and complex- ity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of large-scale, multi-modal and multi-relational datasets. Given that such data are often efficiently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review low-rank tensor decompositions and tensor net- works as emerging tools for dimensionality reduction and large scale optimization problems. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to alleviate the curse of dimensionality in a number of applied areas. In Part 1 of this monograph we provide innovative solutions to low-rank tensor network decompositions and easy to in- terpret graphical representations of the mathematical operations on tensor networks. Such a conceptual insight allows for seamless migra- tion of ideas from the flat-view matrices to tensor network operations and vice versa, and provides a platform for further developments, prac- tical applications, and non-Euclidean extensions. It also permits the introduction of various tensor network operations without an explicit notion of mathematical expressions, which may be beneficial for many research communities that do not directly rely on multilinear algebra. Our focus is on the Tucker and tensor train (TT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide linearly or even super-linearly (e.g., logarithmically) scalable solutions, as illustrated in detail in Part 2 of this monograph.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值