有限温度量子多体系统与热态张量网络

1 有限温度量子多体系统

关联电子材料,如局域电子的海森伯自旋链(图1)、巡游电子Hubbard 系统等,其实验测量都是在有限温度下完成的。为了拟合实验获得的如磁化率、比热等静态性质以及动力学结构因子等动态性质,都需要精确高效的有限温度模拟方法。通过精确的量子多体模拟能够确定如自旋链材料中的耦合积分、各向异性参数等,得到准确的模型描述以获得对相关量子材料的深入理解。因此实验上的有限温度性质测量对量子多体物理研究提出了问题和挑战。

图1 海森伯模型示意,J代表最近邻自旋之间的相互作用

另一方面,从理论上人们也提出了一些问题,如温度能在什么程度上影响到量子多体系统?如何刻画有限温度下的量子纠缠?又有可能给出哪些温度依赖的有趣性质?对这些问题的追问,人们已得到了一些有趣的答案,包括超导、超流、低温声子比热的T3 律等。由于温度的引入,我们看到量子多体系统处于量子涨落和热涨落的双重影响下,物理现象变得更加丰富且实验可测。以量子相变为例,虽然相变只严格发生在绝对零度时,是系统基态的转变,然而在低温下量子临界点会展开成一个扩展的量子临界区。在量子临界区的有限温度性质,都会受到量子涨落的强烈影响而展现出随温度的标度行为(scaling behavior)并给出一些普适热力学数据(universal thermal data)。对这些新奇有限温度性质的探索和追寻,极大丰富了量子多体物理研究的理论内容。

1.1 量子多体系统、统计场论与重正化群模拟方法

常规的量子场论给出了T=0 K时描述量子多体系统的理论框架。然而我们知道现实的物理环境都是有温度的,宏观世界中的量子多体系统,如一块金属中的相互作用着的巡游电子,或宏观磁体中彼此耦合的量子自旋,都离不开与环境的作用。当量子系统与恒定温度的外界存在热交换时(正则系综),经过充分长的时间,系统会实现热化(thermalization) 而达到热平衡状态(thermal equilibrium)。达到热平衡的系统,尽管其中无时不刻存在着大量的热涨落动力学过程,但统计平均而言具有均匀的温度T 和确定的宏观性质(确定的粒子数N、体积V等)。人们需要有限温度的场论来研究这些系统中的热力学相关现象。

量子多体系统是一个具有多自由度的系统,有限温度下描述这类系统的理论框架是统计场论(statistical quantum field theory, statistical QFT) ,或被称为热量子场论(thermal QFT)。人们发展出了一系列理论工具来描述和讨论有限温度下的量子多体系统,包括配分函数的欧几里得(泛函)路径积分表达,高温和低温展开方法,平均场、序参量与对称破缺理论,重正化群理论等等。然而,除少数非微扰的场论方法如共形场论和非线性Sigma 模型,以及若干严格可解模型外,一般而言计算温度格林函数和配分函数(有限温度真空振幅)的主要手段是费曼图微扰展开。这对我们关心的强关联系统如海森伯自旋系统或Hubbard 电子模型等往往是不够精确的。为此人们发展出了一系列非微扰的高精度数值方法来处理关联电子系统的热力学性质(以及动力学性质),这些方法包括数值精确但是限于小尺寸系统的精确对角化方法,大尺度量子蒙特卡罗模拟方法,以及基于系统密度算符的矩阵乘积或张量乘积态表示开发的热态张量网络重正化群方法等。其中,热态张量网络方法是描述和计算低维量子多体系统的有效方法,也是本文主要讨论的内容。

1.2 热态纠缠与热态张量网络

张量网络是描述多体波函数的精确波函数拟设,是凝聚态物理与量子信息的交叉学科领域。张量网络方法主要思想是将含有指数多自由度的多体波函数拆分成“小”张量组成的网络(如矩阵乘积态或张量乘积态等)来有效近似前者。通过能量变分原理,可以优化局域张量中的元素来实现对多体基态波函数的模拟研究。关于基态张量网络的更多介绍,请参考本期专题文章《张量重正化群方法及其应用》。

从量子信息的角度,张量网络非常适合描述满足纠缠面积律的多体波函数。在一维系统的矩阵乘积态和二维系统的张量乘积态中, 连接系统与环境的键指标数目正比于系统与环境的接触“面”,都很好地满足了纠缠面积律,因此非常适合于描述一大类关联长度有限的(有能隙)量子多体物态。在有限温度下,波函数中不仅存在量子关联还有热涨落带来的经典关联, 人们通过定义互信息(mutual information):I = S( ρA ) + S( ρB ) - S(ρ) , 来刻画热态中的总关联。从自由能极小原理出发,不难得到具有相互作用的系统中互信息满足面积律。另一方面,一维的矩阵乘积算符或更高维的张量乘积算符中的键指标维度也可以和互信息联系起来,提供满足互信息面积律的精确热态波函数拟设。如图2(a) 所示, 我们以矩阵乘积算符(matrix product operator,MPO)为例,注意到,两条虚线把整体分成系统A和环境B,当计算系统A的熵时,考虑到2 个维度为χ 的键指标可以合并进来视为一个由LA 个d 能级系统耦合上一个χ 能级的虚拟粒子组成的系统,这样的系统热力学熵的上限为SA = LA ln(d ) + ln(χ),基于同样的分析环境B的熵上限为SB = LB ln(d ) + ln (χ) 。由于整个系统熵的上限为S =(LA + LB)ln(d ) ,因此矩阵乘积算符中能包含最大的互信息是I = SA + SB - S = 2 ln ( χ) ,正比于接触点的数目(即满足面积律)。在两维情况下,如图2(c)所示,我们也容易看出张量乘积算符支持的互信息也正比于切开的键指标数目乘以ln ( χ) ,即正比于接触面积。因此,矩阵乘积算符和张量乘积算符表示的热态都满足互信息的面积律,可以作为短程相互作用系统有限温度混合态“波函数”的绝佳近似。由于互信息满足面积律证明的一般性(只利用了自由能极小原理),即对于基态超越面积律的临界量子多体系统,其有限温度互信息仍然满足面积律,这使得我们总可以利用热态张量网络方法来有效模拟一定温度范围内的量子系统。

图2 (a)矩阵乘积算符,d 为物理指标维度, χ 为键空间维度,虚线将系统与环境切开;(b)将包含LA 个d 能级量子客体组成的子系统从系统中切出,可以看成LA 个真实粒子耦合上一个χ 能级的虚拟粒子;(c)对于两维热态张量网络,切开虚拟指标的数目正比于系统与环境的边界,给出正比于面积律的互信息

2 世界线张量网络重正化群方法与自由能变分原理

我们按照历史发展顺序介绍:基于传统密度矩阵重正化群(density matrix renormalization group,DMRG)方法的转移矩阵重正化群(transfer-matrix renormalization group(MRG)。Wang &Xiang, 1997),基于纯化的有限温度DMRG方法,以及这些算法的张量网络表示,线性张量重正化群方法。并简要介绍其他有限温度重正化群方法,如White 提出的最小纠缠典型量子热态方法(minimally entangled typical thermal state,METTS)。

2.1 转移矩阵重正化群

基于Trotter—Suzuki 分解e-τH =Πi=1L e-τhi,i+1 的世界线热态张量网络及其重正化群算法中,正则系综的配分函数Z(β) = Tr(e-βH) 可以视为欧几里得空间内的(泛函)路径积分。通过将哈密顿量拆分成一对对局域的相互作用项之和,同时把倒温度β 切片成M 份很小的倒温度间隔τ ( 使得β = τM) ,可以将配分函数写成一张格点热态张量网络(图3(a))。因此,计算配分函数就转变为对热态张量网络的有效和精确收缩问题,其中每个张量ν 中存储着局域相互作用对应的玻尔兹曼因子。

图3 (a)世界线热态张量网络;(b)空间转移矩阵;(c)温度转移矩阵;(d)局域张量

1997 年人们提出了转移矩阵重正化群的方法,成功实现了一维量子系统热力学极限下有限温度性质的精确计算。其主要思想是将配分函数张量网络视为一列ν 张量排列组成的空间转移矩阵Mi 的重复性排列,如图3(b)所示。基于Z(β) =Πi=1L Mi ,容易看出在系统长度L趋向无穷大时配分函数Z(β)→λmaxL ,其中λmax 为转移矩阵模最大的本征值。在文献中,王孝群和向涛首次提出利用密度矩阵重正化群算法来求解矩阵乘积算符Mi 的最大本征态和对应本征值。其主要步骤如图4(a)所示,构造一个转移矩阵的超块结构s - μ - e - σ ,利用DMRG技术求解其最大本征左矢量|ψL> 、右矢量|ψR> 和对应本征值λmax ,进而得到系统的均格点自由能f = -ln (λmax)/β 。为了能够计算更低的温度,我们需要将超块沿着倒温度方向“长大”,就需要找到重正化基底s͂ (包含χ 个基底)来表达s - μ 的系统块(包含χd 个基底),同时考虑左右最大本征矢量我们构造出“密度矩阵” ρs͂,s͂' ,并保留其中最重要的χ 个基底作为新的系统块。完全类似地,可以得到环境块e - σ的最优约化基底e͂。用s͂和e͂替换掉之前的s 和e,我们可以进入下一轮“长点”和重正化过程来计算更低温度的热力学性质。

图4 (a)转移矩阵重正化群算法;(b)重正化剪裁变化及其展开;(c)边界矩阵乘积态

2.2 纯化、有限温度密度矩阵

重正化群及其张量网络算法TMRG 实现了无穷大系统的有限温度计算,然而在不少场景下(如非均匀系统)人们也需要计算有限长系统的热力学性质。利用纯化的思想, 人们可以在传统DMRG 的框架内实现这一目的。其思路如下:纯态波函数中部分求迹会得到一个有效的“热态”约化密度矩阵,如果恰当构造虚拟系统n͂与物理系统n 耦合的纯态波函数,可以使得求迹n͂得到约化密度矩阵代表有限温度系统下对应物理系统n 的密度矩阵。具体地说,首先构造物理指标与辅助的虚拟指标处于最大纠缠态|n,n͂>的纯化波函数(代表无穷高温热态),然后从该无穷高温热态开始做虚时间演化降温,即|ψ> = e-1/2βH|n,n͂>,注意其中演化算符仅仅作用在物理系统n 上。对n͂求迹不难得到ρn,n' = <n|e-βH|n'> ,这恰好是物理系统n 在倒温度β 时的密度矩阵。基于这样的纯化策略,结合Trotter—Suzuki 分解以及密度矩阵重正化群裁剪,可以通过计算纯化态|n,n͂>的虚时间演化来计算热力学观测值。由于篇幅所限,我们在这里不详细介绍传统DMRG方案演化纯化波函数的细节。但是注意到张量网络框架内也可以完成有限温度性质计算,即线性张量重正化群,且两个算法存在一一对应。下面我们从张量网络的角度介绍这个对应,以及计算有限温度性质的热态张量网络方案。

从热态张量网络角度看,配分函数的纯化策略等价于热态张量网络的双层收缩。如图5(a)所示,上下双层的收缩分别对应着e-1/2βH作用在单位算符(无穷高温密度算符)上。最外侧的物理指标一直未被演化,对应于纯化方案中的辅助系统:热态张量网络在温度方向满足周期边界条件,在计算配分函数的时候需要求迹掉这些指标,得到对应倒温度β的密度矩阵。具体演化过程如图5(b)所示,将演化门操作逐个地作用在既有的密度矩阵乘积算符上(由张量T 组成),就可以将密度矩阵线性地“降温”到指定倒温度。由于这样的策略线性地收缩张量网络,因此被称作线性张量重正化群(linearized tensor renormalization group,LTRG)方法。这里介绍的LTRG 方法采用张量网络的语言来实现了有限长系统的有限温度DMRG计算。事实上发挥张量网络方法的灵活性,LTRG方法还可以直接实现无穷长系统的有限温度计算,可以参看文献中更多的介绍。

图5 (a)双层线性张量重正化群,上下两层张量网络互为共轭;(b)有限系统的虚时间演化过程,从一层逐个作用虚时间演化门,将系统温度降低一个小倒温度间隔τ

2.3 自由能极小变分原理与有限温度算法的等价性

在双层LTRG算法中,投影门作用到密度矩阵的矩阵乘积态表示上后,键指标的裁剪原则是按照系统二分时的奇异值λi 来选取基底的。基于双层收缩算法时自由能F = -1/β ln(Σiλi2) ,因此剪裁时舍弃奇异值最小的部分,是严格保证自由能极小原理的(配分函数最大)。结合上文中介绍过的互信息最大也是自由能极小这一原理导出的结果,所以我们认为自由能变分原理实际上给出了有限温度张量网络计算的指导原则。

另一方面,张量网络是有限温度量子多体计算中的有力框架,可以将传统方法里看起来很不相同的TMRG和有限温度DMRG都包含进来,并帮助理解它们之间的实质等价性。粗看起来,LTRG是沿着虚时间方向收缩而TMRG是沿着空间方向收缩,然而如图3(b),(c)所示,在LTRG的压缩键指标过程中,实际上折叠着一个边界矩阵乘积态(boundary matrix product state),这一矩阵乘积态展开后正是TMRG中转移矩阵的最大本征态。通过上述分析,我们得到图6 中这3 类算法之间的关系,在热态张量网络的框架下,可以直观认识到TMRG 和有限温度DMRG 之间并不存在鸿沟,在裁剪方法和优化原理上二者都是一致的。

图6 热张量网络算法与传统DMRG有限温度算法的等价性

2.4 最小纠缠典型热态

除了上面介绍的TMRG,有限温度DMRG,LTRG 方法等,人们还发展出了一些不同的基于Trotter—Suzuki 分解的重正化群方法。下面我们扼要介绍S. R. White 在2009 年提出的最小纠缠典型热态(minimally entangled typical thermal state,METTS)方法,该方法与前面介绍的纯化或者热张量收缩不同,采用了蒙特卡罗抽样的方法从密度矩阵中抽取最重要的基底,最小纠缠典型量子态,来有效计算热学量的平均值。其马尔科夫链抽样过程如下:从一个经典直积态出发,使用有限温度DMRG方法计算这个态的虚时间演化e-1/2βH,如接受的话,这个态即是METTS 中的一员,需要计算观测值并计入抽样中;然后随机抽取另一个直积态|i> ,与上一步得到的METTS 做内积,将得到的重叠几率<i|e-βH|i> 与一个随机数做比较来选择接收或者放弃这一步更新。

METTS 的优势是,DMRG 的计算只涉及到矩阵乘积态,相比纯化策略中需要处理直积扩大的希尔伯特空间(矩阵乘积算符),METTS只需要处理较小空间上的矩阵乘积态。因此METTS 对有限温度的计算,特别是在极低温度下可能会有一些优势。但是另一方面,METTS需要引入随机抽样误差,且无法直接计算自由能(无法纳入到自由能变分原理的原则下来判断算法优劣)。一些关联函数的计算表明,METTS 在与纯化DMRG的精度和效率比较中都没有优势,而另一些两维小尺寸系统的计算则表明METTS 可以达到纯化无法计算的低温。METTS方法更多的发展,包括非阿贝尔对称性的引入,算法精度优势等还有待于进一步研究。

3 级数展开张量网络的重正化群方法

基于Trotter—Suzuki 分解的有限温度重正化群方法非常成功,拥有较高的计算精度和向高维度的扩展性。然而,人们仍然在探索,有没有可能开发出新的热态张量网络方法,可以去除掉世界线框架中的一些固有局限。比如Trotter—Suzuki分解带来的固有误差,限制了计算能够到达的精度上限。为了去除Trotter 误差的影响,严格的处理是将时间切片τ 减小,并对零时间切片做外推,这无疑增加了实际计算的复杂性和时间代价。另外,Trotter—Suzuki 方案使得计算不够灵活,计算的温度点是分立的而无法做到在量子蒙特卡罗计算中早已实现的连续“时间”有限温度计算。Handscomb在20 世纪60 年代提出级数展开量子蒙特卡罗(quantum Monte Carlo,QMC)算法,此算法后发展为随机级数展开(stochastic series expansion,SSE)方法,在分立的框架下实现了实质上的连续“时间”计算,成为QMC算法的主流方法之一,在计算量子自旋系统中发挥了非常重要的作用。

受到Handscomb 算法和SSE 算法的启发,我们引入重正化群裁剪和张量网络技术,提出了在泰勒展开框架下的新型高精度热态张量网络方法,即级数展开热态张量网络(series-expansion thermal tensor network,SETTN)方法。由于在SETTN不进行Trotter—Suzuki 分解(从而完全去除了计算中的Trotter 误差),而是采用级数展开方法在1+1 维的指数空间里面对配分函数进行精确计算(图7)。同时,利用系统哈密顿算符的矩阵乘积算符(MPO)表示,可以将有限温度密度矩阵做级数展开ρ(β)≃Σn(-β)n/n! Hn 。SETTN 第一次在分立张量网络框架下实现了连续(虚)时间的重正化群模拟方法,对温度的选取可不必遵循倒温度β的等差序列,有很好的灵活性。

图7 (a) 哈密顿量H的MPO表示;(b) Hn的MPO表示

我们在XY模型的有限温度性质计算中,比较了世界线方法(LTRG)与级数展开热态张量网络方法(SETTN)两种算法,发现在计算精度和效率上,级数展开方法都是明显优于世界线热态张量网络方法的。例如,通过与精确对角化结果相比,发现SETTN在模拟海森伯XY链时,在相对较小的计算量下就实现10-8—10-9的高精度有限温度模拟,这在世界线方法中是很难做到的。同时注意到SETTN除了去除Trotter 误差和实现连续时间计算这两个级数展开算法的优势外,与随机蒙特卡罗方法相比也没有后者存在的负符号问题,因此可以计算如阻挫J1 - J2 自旋链系统的有限温度性质。

4 两维热态张量网络方法及其展望

热态张量网络重正化群方法在两维格点上的推广按照计算对象可以分为无穷大尺寸和有限尺寸算法,下面我们扼要介绍两维热态重正化群算法的情况及其展望。

4.1 无穷大尺寸系统的张量乘积态方法

热态张量网络方法的一个优势就是可以直接计算无穷大尺寸系统。我们可以把无穷大尺寸系统的有限温度密度矩阵表达成矩阵乘积态(一维系统)或张量乘积态(二维)的形式,如图2(a),(c)所示。一维无穷大尺寸的计算也同样是高度精确的,在临界海森伯XY 链热力学性质的计算中,比热计算到非常低的温度(T/J= 0.01) 仍然保持了很高的精度;在两维格子上,可以采取简单优化(simple update)策略,在系统“纠缠”不强的情况下,也可以非常准确地计算出系统的能量。在这个基础上稍作改进,可以将热态张量网络中的局域张量“浸”在无穷大的树状结构上,在满足“超正交”条件下进行优化。在优化结束后接回得到两维张量乘积算符,并求迹来计算热力学性质,获得很好的计算结果。

在处理两维张量乘积态时,较之一维矩阵乘积态,存在的主要困难是两维张量网络无法严格收缩,必须采取近似收缩手段才能完成。在热态张量网络计算当中,比较流行的两种收缩方法是边界矩阵乘积态和角转移矩阵重正化群方法(corner transfer matrix,CTMRG)。除了简单优化策略,有限温度性质的计算也可以采取全局优化(full update)来进行。如图8 所示,通过两维张量网络收缩(采用边界MPS 或CTMRG 方法),得到待优化的键指标对应的环境张量K,我们可以利用迭代求解一对等距变换Qa,Qb 来压缩对应键指标。具体过程如图8 所示,先“冻结”住Qb ,求解线性方程组找到Qa 来获得最低的变分自由能,再冻结Qa 优化Qb ,并依此类推直至收敛。保留同样的键空间维度,全局优化策略可以获得比简单优化更好的精度,但是全局优化需要更大的计算代价才能实现,这就限制了键指标维度的大小,进而局限了计算的精度。

图8 键空间优化的变分方法,K是待压缩键指标的环境张量

按照上面介绍的思路,并同时考虑费米子交换门,张量乘积热态算法最近还被推广用于计算费米子系统,获得了很好的结果。在计算这类问题时,张量网络方法没有量子蒙特卡罗遇到的负符号问题,具有很好的发展前景。

4.2 有限尺寸系统算法

相比无穷大系统的计算,有限尺寸有限温度的模拟仍然处于待发展的阶段。目前尚未实现采用张量乘积态算法来实现有限尺寸系统的热力学性质计算,仅在采用基于矩阵乘积算符表示上有一些结果。其主要思路是将两维系统映射到带有诸多长程相互作用的一维“蛇形链”(图9),然后用Trotter—Suzuki 分解将演化算符拆成局域相互作用的虚时间演化块并向矩阵乘积态上作用。当涉及到“长程相互作用”时,需要引入交换门将两个物理自由度移至近邻位置然后把演化块投影到这两个“近邻”格点上,作用结束后还需要用交换门将移动过来的物理指标恢复原位。采用矩阵乘积态来处理两维格点模型的优势是计算可控性好,在Trotter 切片足够小误差可以忽略的情况下,裁剪满足有限温度计算的自由能变分原理。然而,这样计算的缺陷也是非常明显的,首先这样计算的效率不太高,矩阵乘积热态不是Trotter—Suzuki分解自然形成的张量网络态,在计算过程中还需要额外引入很多(数目与系统宽度呈平方关系)交换门操作,限制了计算效率。在SETTN计算中利用哈密顿量的矩阵乘积算符表示,这个计算低效的问题有希望被克服。将两维问题映射到一维路线的第二个缺陷是矩阵乘积态来表示两维热态不满足互信息的面积律,这一困难是本质上的,它限制了MPO方法计算两维系统的规模而只能模拟较小尺寸的系统。为了克服这一困难,一个理想的解决途径是采用张量乘积态来表示两维有限温度系统。另外,应用对称性可以提高两维有限温度计算的效率。这些都是实现高效模拟两维关联电子系统热力学性质有待进一步发展的方向。

图9 将两维格子映射到带长程相互作用的“蛇形链”结构

5 热态张量网络方法应用:量子临界制冷剂

在具体介绍热态张量网络方法及其发展后,我们举一个自旋链材料的例子及其中量子临界相关的新奇热力学效应,来说明我们发展高精度热态张量网络方法的应用。2.5 水合硝酸铜(化学式:Cu(NO3)2·2.5H2O)是人们最早研究的自旋链材料之一(晶体结构为单斜,见图10(a)),早在1963 年Friedberg 等人就通过磁化率的测量发现这个材料的磁学性质需要用量子自旋链模型来解释。人们经过长期的研究,确定了硝酸铜材料的磁性哈密顿量形式为二聚合的海森伯自旋链( α 为交替耦合参数),

我们通过第一性原理计算[23],可以看到电子密度的确集中分布在倾斜的一维线上,因此电子之间的交叠积分主要集中在一维链内,而在链间只存在非常微弱的电子云交叠积分( 图10(b), (c))。(1) 式所示的哈密顿量可以通过重正化群方法计算其热力学性质,并精确拟合实验测量的磁化率和磁化曲线,定出模型参数为J=5.13 K,α= 0.23。

图10 (a) Cu(NO3)2·2.5H2O的晶体结构;(b)自旋超交换路径;(c)电子在实空间的线状分布

通过了解材料Cu(NO3)2·2.5H2O的哈密顿量和详细的耦合参数,我们可以对该材料的磁性相关物理性质,包括平衡态热力学、磁激发热输运等通过量子多体模拟做精确模拟和理论预言。这里我们讨论硝酸铜材料中临界增强的磁热效应(magnetocaloric effect)。磁热效应是磁体在绝热地靠近(或远离)外磁场时温度升高(或降低)的可逆热力学效应。其本质是外磁场变化诱导磁体中磁有序程度发生变化,进而产生磁熵变(等温条件下),在绝热条件下就表现为磁体温度发生变化。从这个分析容易看出,大的磁热效应需要磁体对外磁场有显著的响应。这样的条件在铁磁—顺磁的居里点附近容易被满足,在相变温度以下巨大的外斯场会将自旋指向“冻结”住而无法对外磁场作出有效响应进而产生可观测的磁熵变。因此,在低温下铁磁体有序化并往往仅显现出非常微弱的磁热效应。量子自旋链材料则不同,如图11所示,在低温磁化曲线中存在两个临界场,对应着两个量子相变点。在这两个临界磁场之间为无能隙的自旋液体态,即便降到非常低的温度,由于量子临界性,系统中的磁自由度并不会被“冻结”住,而是处于量子涨落支配下的自旋液体状态,并对外场改变存在显著的熵变响应。具体的说,在量子临界区内,描述系统磁制冷能力的格林艾森(Grüneisen)参数Γ = 1/T (∂T/∂B)S 会在量子临界区内随温度下降而发散,对应指数反映了量子临界性。发散的格林艾森参数提供了探测量子临界性的普适热数据,这不仅从理论角度非常有趣,同样吸引人的是这一发散行为描述了实验可测的临界增强低温磁热效应。在图11 中,我们画出了系统的等熵曲线,沿着等熵线变化磁场(绝热去磁)在3 T左右的地方存在一个反常的低温谷,这就是量子临界对低温热力学性质的影响。在熵很小(S/R=0.08,起始温度很低)的情况下,可以看到绝热曲线会再劈裂出两个子谷,对应两个临界磁场下的量子相变点。这样的自旋链材料在量子临界区里实现了普适增强的磁热效应,可以用于低温(1 K以下)的获取,我们称之为量子临界制冷剂。由于热态张量网络等多体模拟方法的发展,使得我们可以对这样的系统展开高精度的研究,指导人们探索更多这样的新奇量子物态与具有新奇效应的量子材料。

图11 Cu(NO3)2·2.5 H2O 的等熵线

6 结语

有限温度模拟关联量子材料具有重要的理论价值和现实意义,丰富了多体物理研究的内容,同时也在技术上具有更大挑战性。本文讨论了有限温度量子多体系统的热态张量网络方法,探讨了这类有限温度重正化群计算的理论基础,包括自由能极小变分原理与张量网络热态对互信息面积律的支持等。重点介绍了几种世界线张量网络和新近发展的级数展开张量网络方法,并展望了热态张量网络在两维格点系统的推广前景。我们结合临界增强量子磁热效应为例介绍了在探索新奇热态方面的一些尝试。热态张量网络方法仍处在快速发展中,我们期待这个领域中有持续不断的新进展。

Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning algo- rithms typically scale exponentially with data volume and complex- ity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of large-scale, multi-modal and multi-relational datasets. Given that such data are often efficiently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review low-rank tensor decompositions and tensor net- works as emerging tools for dimensionality reduction and large scale optimization problems. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to alleviate the curse of dimensionality in a number of applied areas. In Part 1 of this monograph we provide innovative solutions to low-rank tensor network decompositions and easy to in- terpret graphical representations of the mathematical operations on tensor networks. Such a conceptual insight allows for seamless migra- tion of ideas from the flat-view matrices to tensor network operations and vice versa, and provides a platform for further developments, prac- tical applications, and non-Euclidean extensions. It also permits the introduction of various tensor network operations without an explicit notion of mathematical expressions, which may be beneficial for many research communities that do not directly rely on multilinear algebra. Our focus is on the Tucker and tensor train (TT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide linearly or even super-linearly (e.g., logarithmically) scalable solutions, as illustrated in detail in Part 2 of this monograph.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值