论文阅读:RippleNet:让用户偏好在知识图谱中像水波纹一样传播

在这里插入图片描述

1.motivation

为了缓解冷启动问题,本文考虑将知识图谱当成物品的side-information。目前存在两类KG-aware的方法:基于KG embedding的方法,这类方法考虑实体以及属性,并将其吸收进物品的表达,这类方法适合图内预测的任务,比如link-prediction;基于路径的方法,这类方法考虑实体关系之间的元路径或者元图,但是现实中元路径是数不清的,这不适应于新闻推荐,因为手动设计元路径不适合。本文提出一种结合两种算法的优势,既将KG embedding个人偏好传播考虑其中,又无需手动设置元路径自动找到一条从历史物品中与候选物品的关联。比如用户看了黄渤主演的疯狂的石头,黄渤又主演了疯狂的赛车,那么这样就可以存在一条路径使得用户,疯狂的石头,黄渤,疯狂的赛车相连。

2.method

在这里插入图片描述
第一步将用户历史交互或者感兴趣的物品作为种子,确定k-级和用户相关的实体,
在这里插入图片描述
再借由实体集确定k-级的关联的三元组
在这里插入图片描述
可以看见随着级数k增加,相关性是在减少的,像水波一样,远离中心点的水波纹是越来越浅的。
第二步,偏好传播。尽管每级都有很多实体相连,但是每个邻居的的重要性是不一样的,这里在每层,都进行如下的操作。
在这里插入图片描述
最后加权求和,
在这里插入图片描述
最后用户的表达为:
在这里插入图片描述
第三步,预测,用户和物品表达用内积作为预测值,也就是用户对物品的偏好值。

3.experiments

本文主要的应用场景是CTR预估,当然也做了物品推荐的任务。例行公事的超参敏感、消融学习,这里就不赘述,还是讲一下实验的亮点。
在这里插入图片描述
本实验给出了case study,也就是真实数据集中实体相关度的一个可视化图。

4.conclusion

本文的优势在于综合了两类kg-aware方法的优点,考虑用户-物品-属性更深层次的连接,从属性的关联推测可能推荐的物品。但是该方法有一个缺陷,严格依赖实体的属性表达,也就是非常依赖整个知识图谱的构建。假设我描述物品的属性不够多,那么这种方法是否还能取得更好的效果呢?

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值