ripple net模型: 知识图谱结合推荐系统
论文地址
这几天大概了解了推荐系统(下面简称RS)这块的几种算法,趁记忆还在,赶紧记录一下
ripple net 最直观的理解
ripple的中文是波纹。波纹是怎么来的呢?是你往水里面扔东西产生的。所以在这里ripple net与RS的结合,就相当于往水里投了一块石头(这里是石头就是波纹的中心,也就是RS中的用户历史点击矩阵)
扔石头就会激起一层又一层的波纹,这里被激起的波纹就对应了知识图谱(下面简称KG)一个又一个的实体。由用户的历史纪录激起的水波,就是用户潜在感兴趣的item
除此之外波纹还有一个特点,它会随着层数的变大而逐渐衰减,这里类比到ripplenet也是同样的
具体可以看下面论文中的图
用公式描述ripple net
好了,通过刚刚对ripple net直观的认识,相信大家心里应该大概明白ripple net的作用机制了,那么接下来我们来看看ripple net的结构
首先我们先来梳理一下大概的内容:
ripple net输入:
- user的历史点击矩阵(点击则为1,没有点击则为0)
- 知识图谱
ripple net输出:
- user对item的潜在偏好,也就是预测矩阵
ripple net内部:
最终想要得到预测矩阵,其实就是要比较user embedding(特征)与item embedding的相似程度,可以用下面的公式来描述他们的相似度
u T v u^Tv