python3.7+Anaconda3+CUDA10.0+cuDNN7.5.0 安装TensorFlow-GPU1.13.1详细步骤

python3.7+Anaconda3+CUDA10.0+cuDNN7.5.0 安装TensorFlow-GPU1.13.1详细步骤

配置前期准备:
1.安装python3.7
2.安装Anaconda3并配置环境变量
以上两个步骤较为简单,且不会影响下文安装,本文跳过。

1. 安装TensorFlow-GPU

  1. 进入Anaconda Prompt终端;
  2. 在Anaconda中创建TensorFlow-GPU环境(Anaconda支持用户启动不同的独立环境进行独立项目开发以应对不同开发环境需求,防止环境混乱),运行以下命令后,如有提示是否继续输入y继续创建即可;
conda create -n Tensorflow-GPU pip python=3.7 
  1. 激活刚刚创建的TensorFlow-GPU环境;
conda activate Tensorflow-GPU
  1. 在对应环境下安装TensorFlow-GPU1.13.1,利用国内镜像源加快下载速度,==后可以根据自己需求安装不同版本的TensorFlow-GPU;
pip install tensorflow-gpu==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
  1. 安装conda基础包(可选)
    在创建新的环境后,有部分代码运行所需的基础包没有被下载下来,运行以下命令可将conda的基础包一起下载到当前环境下,当然这一步可以省略,后续代码运行缺少哪些依赖包再进入conda环境下下载即可。
conda install anaconda

2.安装CUDA Toolkit 和cuDNN

  1. 首先根据自己所安装的TensorFlow-GPU版本,查看对应匹配的CUDA和cuDNN版本(版本一定要相互对应);
    在这里插入图片描述
  2. 下载CUDA与cuDNN
    如上图,安装TensorFlow-GPU1.13.1的话,需要对应安装CUDA10.0与cuDNN7.5.0
    CUDA下载地址:https://developer.nvidia.com/cuda-toolkit-archive
    在这里插入图片描述
    在这里插入图片描述进入官网后根据以上两图的提示,下载CUDN Toolkit;
    cuDNN下载地址:https://developer.nvidia.com/rdp/cudnn-archive
    在这里插入图片描述打开后找到这个下载;

注意:
下载cuDNN的步骤需要登录Nvidia账号,最近不知道为什么Nvidia官网登录账号后一直跳转到空白页面显示error,如遇到相同问题,以下提供两种其他下载方式:

  1. 复制下载链接,打开迅雷或者其他第三方下载软件进行下载;
    在这里插入图片描述
  2. 看到网上资源下载大部分都是通过CSDN积分下载,门槛高,现提供个人分享的百度云资源地址,可供下载cuDNN7.5.0和CUDA Toolkit10.0:
    链接:https://pan.baidu.com/s/1N7C_FognH4YcQKCoLArCTQ
    提取码:c1ak
  1. 卸载现有显卡驱动
    由于CUDA Toolkit需要在指定版本显卡驱动环境下才能正常使用的,所以如果我们已经安装了nvidia显卡驱动(很显然,大部分人都安装了),再安装CUDA Toolkit时,会因二者版本不兼容而导致CUDA无法正常使用,这也就是很多人安装失败的原因。而CUDA Toolkit安装包中自带与之匹配的显卡驱动,所以务必要删除电脑先前的显卡驱动。卸载完显卡驱动后你还要删除文件:
    删除系统盘中Program Files (x86)和Program Files内包含的
    NVIDIA Corporation和NVIDIA GPU Computing Toolkit文件夹
    在这里插入图片描述
    完成以上步骤后,显卡驱动已经删了,桌面右键的NVDIA控制面板也不见了;
  2. 安装CUDA与cuDNN
    完成步骤3后重启电脑更新配置,然后就可以开始安装CUDA:
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
    安装成功后,不急着重启电脑,最后一步,将下载下来的cuDNN压缩包解压,并找到下载CUDA的根目录,将cuDNN中每个文件夹下(bin、include、lib)的所有文件,复制到CUDA根目录下的对应文件夹,以其中一个为例:
    在这里插入图片描述移动后:
    在这里插入图片描述这样CUDA Toolkit 9.0 和 cuDnn 7.0就已经安装了,下面要进行环境变量的配置。
    将下面四个路径加入到环境变量中(虽然安装后会自己添加环境变量,但是避免后续出错最好检查一下)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp

在这里插入图片描述到此,全部的安装步骤都已经完成。

3.测试是否安装成功

如第一步,进入TensorFlow-GPU环境,打开python,输入以下代码:

import tensorflow as tf
hello=tf.constant(‘hello,world’)
sess=tf.Session()
print(sess.run(hello))

安装成功的运行截图如下:
在这里插入图片描述同时,打开任务管理器可以看到GPU已经开始运行,则代表TensorFlow(GPU)安装成功。
在这里插入图片描述

4.安装问题解决(持续更新)

  1. 执行import tensorflow as tf时报错:
    在这里插入图片描述类似以上的错误,可以打开Anaconda3的安装路径,找到anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework目录下的dtypes.py,
    将_np_quint8 = np.dtype([(“quint8”, np.uint8, 1)])改为:

_np_quint8 = np.dtype([(“quint8”, np.uint8, (1,))])

然后再次执行import tensorflow as tf导入正常。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值