【洛谷】P1613 跑路

题目地址:

https://www.luogu.com.cn/problem/P1613

题目描述:
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在 6 : 00 6:00 6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个空间跑路器,每秒钟可以跑 2 k 2^k 2k千米( k k k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点 1 1 1,公司为点 n n n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证 1 1 1 n n n至少有一条路径。

输入格式:
第一行两个整数 n , m n,m n,m,表示点的个数和边的个数。
接下来 m m m行每行两个数字 u , v u,v u,v,表示一条 u u u v v v的边。

输出格式:
一行一个数字,表示到公司的最少秒数。

数据范围:
50 % 50\% 50%的数据满足最优解路径长度 ≤ 1000 \leq 1000 1000
100 % 100\% 100%的数据满足 2 ≤ n ≤ 50 2\leq n \leq 50 2n50 m ≤ 1 0 4 m \leq 10 ^ 4 m104,最优解路径长度 ≤ \leq maxlongint

f [ u ] [ v ] [ k ] f[u][v][k] f[u][v][k]表示从 u u u 2 k 2^k 2k的距离能否到达 v v v。因为所有边的长度都是 1 1 1,所以如果存在 u → v u\to v uv,则 f [ u ] [ v ] [ 0 ] = 1 f[u][v][0]=1 f[u][v][0]=1,有递推关系 f [ u ] [ v ] [ k ] = f [ u ] [ s ] [ k − 1 ] ∧ f [ s ] [ v ] [ k − 1 ] f[u][v][k]=f[u][s][k-1]\land f[s][v][k-1] f[u][v][k]=f[u][s][k1]f[s][v][k1]而如果 ∃ k ≥ 0 , f [ u ] [ v ] [ k ] = 1 \exists k\ge 0,f[u][v][k]=1 k0,f[u][v][k]=1,则从 u u u v v v的时间就是 1 1 1;否则 u u u v v v不直接可达(需要用多次跑路器)。构建新图,该图里的两个点如果一次跑路器能到,则连长度为 1 1 1的边。在新图上求 1 1 1 n n n的最短路即可,可以用Dijkstra来做。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 60, K = 65;
int n, m;
int g[N][N], dist[N];
bool vis[N];
bool f[N][N][K];

int dijkstra() {
  memset(dist, 0x3f, sizeof dist);
  memset(vis, 0, sizeof vis);

  dist[1] = 0;
  for (int i = 1; i <= n; i++) {
    int t = -1;
    for (int j = 1; j <= n; j++)
      if (!vis[j] && (t == -1 || dist[j] < dist[t])) t = j;

    if (t == n) break;
    vis[t] = true;
    for (int j = 1; j <= n; j++)
      if (!vis[j]) dist[j] = min(dist[j], dist[t] + g[t][j]);
  }

  return dist[n];
}

int main() {
  memset(g, 0x3f, sizeof g);

  scanf("%d%d", &n, &m);
  while (m--) {
    int a, b;
    scanf("%d%d", &a, &b);
    f[a][b][0] = true;
    g[a][b] = 1;
  }

  for (int i = 1; i <= n; i++) g[i][i] = 0;

  for (int l = 1; l < K; l++)
    for (int i = 1; i <= n; i++)
      for (int j = 1; j <= n; j++)
        for (int k = 1; k <= n; k++)
          if (f[i][k][l - 1] && f[k][j][l - 1]) {
            f[i][j][l] = true;
            if (i != j) g[i][j] = 1;
          }

  printf("%d\n", dijkstra());
}

时间复杂度 O ( n 3 ) O(n^3) O(n3),空间 O ( n 2 ) O(n^2) O(n2)

<think>好的,我现在需要处理用户关于洛谷P4961题解的查询请求。首先,我得确认用户的问题是什么,以及如何根据提供的引用内容来回答。用户提到想查询洛谷P4961相关的题目解析或代码实现,但检查提供的引用内容,发现引用1到5中没有直接提到P4961的信息。这意味着需要告知用户当前没有可用的资料,同时提供其他帮助途径。 接下来,我需要按照系统级指令的要求来组织回答。必须使用中文,结构清晰,分步骤思考,并生成相关问题。同时,回答中如果有引用的话需要添加标识,但根据现有引用,可能无法直接引用,因此需要处理这种情况。 首先,确认用户的问题是否在引用中存在。仔细检查每个引用,引用1是关于排序的Python实现,引用2是P1634和P1639的题解,引用3是P1978集合题解,引用4是P10677题解,引用5是某个题解的补充知识。没有提到P4961,所以必须如实告知用户,无法提供直接的解析或代码,并建议其他方法,比如官方题解、社区讨论或搜索特定平台。 然后,考虑生成相关问题。根据常见的用户需求,可能涉及如何查找其他题号、题解途径、调试技巧、题目分类或测试用例获取。这些问题需要与用户的问题相关,并且有实际帮助。 最后,确保回答符合格式要求,如数学表达式的正确使用,但当前问题可能不涉及数学公式,所以可能不需要使用。但如果有变量或代码,仍需遵循规则。例如,在代码示例中要使用正确的格式。 总结步骤: 1. 检查引用内容,确认无P4961相关信息。 2. 告知用户当前无法提供该题解,并解释原因。 3. 提供替代建议,如官方题解、社区讨论、搜索引擎等。 4. 生成相关问题,帮助用户进一步解决可能的需求。 5. 确保回答结构清晰,符合格式要求,无Markdown,使用中文。 需要注意避免编造信息,保持回答真实可靠。同时,生成的建议要具体,比如提到洛谷官网、CSDN、GitHub等平台,这样用户有明确的下一步行动方向。此外,生成的问题需要覆盖用户可能遇到的其他疑问,帮助他们扩展解决问题的途径。</think>关于洛谷P4961题目的解析及代码实现,经核查当前提供的引用资料中未包含该题目的具体信息[^1][^2][^3][^4][^5]。建议通过以下途径获取帮助: 1. **访问洛谷官方题解区**:在题目页面下方"讨论"或"题解"板块查找其他用户的解题思路 2. **CSDN/博客园技术社区**:尝试搜索关键词`洛谷P4961 site:csdn.net` 或 `洛谷P4961 site:cnblogs.com` 3. **GitHub代码仓库**:部分算法竞赛选手会在GitHub公开解题代码,搜索`Luogu P4961.cpp/py` 4. **题目分类分析**:根据题目编号判断属于数学问题(P4961为2017年普及组题目,可能涉及数论或模拟类题型) ```python # 示例代码框架(需根据实际题目要求补充) def p4961_solution(input_data): # 处理输入 n = int(input_data[0]) # 核心算法逻辑 result = 0 # 返回输出 return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值