PC-Conv Unifying Homophily and Heterophily withTwo-Fold Filtering

发表于: AAAI24
推荐指数: #paper/⭐⭐⭐ #paper/🚩

问题背景/贡献

以前的图过滤趋向于提取同配节点

贡献:

提出了一种双重过滤器,可以更好的提取异配图的同配信息.
扩展了图热方程

通俗说:

提取了一种新的图过滤通过在奇数阶节点过滤低频信息,在偶数阶节点过滤高频信息的过滤器
利用泊松分布,去提取不同阶的特征,并利用可学习的嵌入联合起来
(为什么用泊松–1.图热方程可以转化为泊松分布的形式2.现实世界很多分布服从于泊松分布)

背景知识:

首先,拉普拉斯矩阵 L = I − A . L=I-A. L=IA.
其次,经典的图优化问题:
min ⁡ Z f ( Z ) = T r ( Z ⊤ h ( L ) Z ) + α ∥ Z − X ∥ F 2 \min_Zf(Z)=Tr(Z^\top h(L)Z)+\alpha\|Z-X\|_F^2 Zminf(Z)=Tr(Zh(L)Z)+αZXF2
其中. α \alpha α是一个平衡常数.这个问题可以被如下问题改编(偏导等于0):
Z = g ( L ) X = ( α I + h ( L ) ) − 1 X . Z=g(L)X=(\alpha I+h(L))^{-1}X. Z=g(L)X=(αI+h(L))1X.
通过上面这个公式,我们可以得到:
h ( L ) = g ( L ) − 1 − α I . h(L)=g(L)^{-1}-\alpha I. h(L)=g(L)1αI.

具体方法:

理论部分:

通过光谱视角,低通过滤器使得节点特征更加平滑.高通滤波器使得节点特征更加尖锐,更加可区分.我们认为前者是同配传播,后者是异配传播.
因此,我们可以定义如下传播

同配传播

Y ∗ = arg ⁡ min ⁡ ⁡ Y T r ( Y ⊤ h 1 ( L ) Y ) + α 1 ∥ Y − X ∥ F 2 Y^*=\underset{Y}{\operatorname*{\arg\min}}Tr(Y^\top h_1(L)Y)+\alpha_1\|Y-X\|_F^2 Y=YargminTr(Yh1(L)Y)+α1YXF2

异配传播

Z ∗ = arg ⁡ min ⁡ ⁡ Z T r ( Z ⊤ h 2 ( L ) Z ) + α 2 ∥ Z − Y ∗ ∥ F 2 Z^*=\underset{Z}{\operatorname*{\arg\min}}Tr(Z^\top h_2(L)Z)+\alpha_2\|Z-Y^*\|_F^2 Z=ZargminTr(Zh2(L)Z)+α2ZYF2
这样我们可以得到优化问题:
Z ∗ = [ ( α 1 I + h 1 ( L ) ) ( α 2 I + h 2 ( L ) ) ] − 1 X Z^*=[(\alpha_1I+h_1(L))(\alpha_2I+h_2(L))]^{-1}X Z=[(α1I+h1(L))(α2I+h2(L))]1X

异配图热核

为了解决异配图高阶信息的挑战,我们从图扩散的角度考虑.对于异配图来说,互补图可以提取缺失的一半结构,这可以在某种程度减轻类间聚合损失并丰富信息结构
我们定义互补图,其邻接矩阵为: A ˉ = p I − A ˙ \bar{A}=pI-\dot{A} Aˉ=pIA˙.在这里,p是超参去衡量自环的权重.表示: L ~ = ( p − 2 ) I + L \tilde{L}=(p-2)I+L L~=(p2)I+L, H h e t e = e t L ~ X . H_{hete}=e^{t\tilde{L}}X. Hhete=etL~X.
通过泰勒公式展开,我们可以得到如下异配图公式:
H h e t e = ∑ r = 0 ∞ ( t ( p − 1 ) I − A ) 2 r + 1 ( 2 r + 1 ) ! + ( A − t ( p − 1 ) I ) 2 r ( 2 r ) ! H_{hete}=\sum_{r=0}^\infty\frac{(t(p-1)I-A)^{2r+1}}{(2r+1)!}+\frac{(A-t(p-1)I)^{2r}}{(2r)!} Hhete=r=0(2r+1)!(t(p1)IA)2r+1+(2r)!(At(p1)I)2r
我们可以通过让奇数阶高斯核邻居推开,让偶数接邻居信息聚合.这和异配图的结构信息是异质的.

PC-Conv

对于异配图聚合, g 1 ( L ~ ) = e t L ~ g_1(\tilde{L})=e^{t\tilde{L}} g1(L~)=etL~,相应的能量函数是: h 1 ( L ~ ) = e − t L − α 1 I h_{1}(\tilde{L})=e^{-tL}-\alpha_{1}I h1(L~)=etLα1I.(代入上面h(L)的公式).对于同配传播,我们使用低通过滤去捕获本地低阶信息,以及集合 h 2 = ( L ~ ) = h_{2}=(\widetilde{L})= h2=(L )= L ~ = ( p − 2 ) I + L \tilde{L}=(p-2)I+L L~=(p2)I+L.
这两个式子的特征值都应该是非负的
{ h 1 ( λ ) = exp ⁡ ( − t ( p − 2 + λ ) ) − α 1 ≥ 0 , ∀ λ ∈ [ 0 , 2 ) h 2 ( λ ) = p − 2 + λ ≥ 0 , ∀ λ ∈ [ 0 , 2 ) \left\{\begin{array}{l}h_1(\lambda)=\exp(-t(p-2+\lambda))-\alpha_1\geq0,\forall\lambda\in[0,2)\\h_2(\lambda)=p-2+\lambda\geq0,\forall\lambda\in[0,2)\end{array}\right. {h1(λ)=exp(t(p2+λ))α10,λ[0,2)h2(λ)=p2+λ0,λ[0,2)
通过解这两个方程,我们可以得到如下的公式:
p ∈ [ 2 , − 1 t ln ⁡ α 1 ) p\in[2,-\frac1t\ln\alpha_1) p[2,t1lnα1)
通过同配聚合,h2对应低通过滤:
g 2 ( L ~ ) = ( I + α 2 L ~ ) − 1 g_{2}(\tilde{L})=(I+\alpha_{2}\tilde{L})^{-1} g2(L~)=(I+α2L~)1
通常,k阶图过滤可以被写为:
g 2 ( L ) = ( I − α 2 L ) k g_2(L)=(I-\alpha_2L)^k g2(L)=(Iα2L)k
为了简化,我们将 α 2 = 1 \alpha_{2}=1 α2=1,我们让
Z ∗ = g k , t ( L ~ ) X = ( I − L ~ ) k e t L X = U ⋅ ( I − λ ~ ) k e t λ ⋅ U ⊤ X . Z^{*}=g_{k,t}(\tilde{L})X=(I-\tilde{L})^{k}e^{tL}X=U\cdot(I-\tilde{\lambda})^{k}e^{t\lambda}\cdot U^{\top}X. Z=gk,t(L~)X=(IL~)ketLX=U(Iλ~)ketλUX.
前人用如下公式去提取不同阶的信息,
g ( L ) = ∑ a , b K C a b ( 2 − L ) a L b g(L)=\sum_{a,b}^KC_{\boldsymbol{ab}}(2-L)^aL^b g(L)=a,bKCab(2L)aLb
我们可以

泊松逼近

g k , t ( λ ~ ) = ∑ n = 0 N ( − λ ~ ) n n ! C n ( k , t ) , k ∈ Z + , g k , t ( λ ~ ) → ( I − λ ~ ) k e t λ ~ , N → ∞ . \begin{aligned}&g_{k,t}(\tilde{\lambda})=\sum_{n=0}^N\frac{(-\tilde{\lambda})^n}{n!}C_n(k,t),k\in Z_+,\\&g_{k,t}(\tilde{\lambda})\to(I-\tilde{\lambda})^ke^{t\tilde{\lambda}},N\to\infty.\end{aligned} gk,t(λ~)=n=0Nn!(λ~)nCn(k,t),kZ+,gk,t(λ~)(Iλ~)ketλ~,N∞.
对所有节点使用单个k意味着本地信息聚合的程度是固定的,这将导致欠平滑问题.为了充分利用多阶节点的特征,我们引入了一个科学习的参数 θ k \theta_{k} θk来聚合k阶邻居的信息.其中每个项都可以作为单层过滤器.
Z ∗ = g t ( L ~ ) X = U ( θ 0 + ∑ k = 1 K θ k ⋅ g k , t ( λ ~ ) ) U ⊤ X = θ 0 ⋅ X + ∑ k = 1 K θ k ⋅ ∑ n = 0 N C n ( k , t ) ( − L ~ ) n n ! X \begin{gathered} Z^{*} =g_t(\tilde{L})X=U(\theta_0+\sum_{k=1}^K\theta_k\cdot g_{k,t}(\tilde{\lambda}))U^\top X \\ =\theta_0\cdot X+\sum_{k=1}^K\theta_k\cdot\sum_{n=0}^NC_n\left(k,t\right)\frac{(-\tilde{L})^n}{n!}X \end{gathered} Z=gt(L~)X=U(θ0+k=1Kθkgk,t(λ~))UX=θ0X+k=1Kθkn=0NCn(k,t)n!(L~)nX

总结

这篇文章提出了一种对不同阶的GNN(奇数阶,偶数阶)不同的过滤操作以及通过泊松分布去生成不同阶的过滤,挺有意思的,也挺有意义的

  • 10
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值