Graph Neural Networks withSoft Association between Topologyand Attribute

文章发表于:AAAI24
推荐指数: #paper/⭐⭐⭐

先验知识以及总结:

(参考毛海涛去年NeurIPS的文章文章链接)
以高的结构信息(英文high global structure proximity)(全局信息?不知道中文叫啥名字)为依据,取给异配图加边,会让图变得更加同配.
我自己的假设(不一定对),既然这样,我们按照局部信息(在某种意义上可以理解为特征相似性)(与高的结构信息相反)去删边,那么也会使图变得更加同配.本文就基于如上的推测

问题背景

问题:

以往的GNN都是基于同配图设计的

解决方法:

1.提出了软连接
2.图修剪模块和图增强模块被提出(目的:动态的删减/增加图的边让图适合同配性/异配性)
文章配图

实验详情:

min ⁡ Z , U ∥ U − X ∥ F 2 + α 1 tr ⁡ ( Z ⊤ L ~ Z ) + α 2 ∥ U U ⊤ − A ∥ F 2 \min_{\mathbf{Z},\mathbf{U}}\left\|\mathbf{U}-\mathbf{X}\right\|_F^2+\alpha_1\operatorname{tr}\left(\mathbf{Z}^\top\tilde{\mathbf{L}}\mathbf{Z}\right)+\alpha_2\left\|\mathbf{U}\mathbf{U}^\top-\mathbf{A}\right\|_F^2 Z,UminUXF2+α1tr(ZL~Z)+α2 UUA F2
在这里,U和Z代表图数据的属性和拓扑表征,两者通过第三项连接.具体是,我们利用表征矩阵U去从特征提取相似性矩阵,让这个矩阵去接近原始的邻接矩阵A.
我们用 E p E_{p} Ep取表示节点删除矩阵, E A E_{A} EA表示节点增加矩阵.这样,目标函数可以定义为:(1-A表示增加的其他边)
min ⁡ Z , U , E P , E A ∥ U − X ∥ F 2 + α 1 tr ⁡ ( Z ⊤ L ~ A Z ) + α 2 ∥ U U ⊤ − ( A ⊙ E P + ( 1 − A ) ⊙ E A ) ∥ F 2 \begin{aligned}&\min_{\mathbf{Z},\mathbf{U},\mathbf{E}_P,\mathbf{E}_A}\left\|\mathbf{U}-\mathbf{X}\right\|_F^2+\alpha_1\operatorname{tr}\left(\mathbf{Z}^\top\tilde{\mathbf{L}}_\mathcal{A}\mathbf{Z}\right)\\&+\alpha_2\left\|\mathbf{U}\mathbf{U}^\top-(\mathbf{A}\odot\mathbf{E}_P+(\mathbf{1}-\mathbf{A})\odot\mathbf{E}_A)\right\|_F^2\end{aligned} Z,U,EP,EAminUXF2+α1tr(ZL~AZ)+α2 UU(AEP+(1A)EA) F2
文章配图
M = [ U K ∥ Z K ] \mathbf{M}=[\mathbf{U}^K\|\mathbf{Z}^K] M=[UKZK]
然后M可以用作半监督分类在线性变换和半监督分类任务后
L = ∑ v i ∈ V L ℓ ( m i ′ , y i ) \mathcal{L}=\sum_{v_i\in\mathcal{V}_L}\ell\left(\mathbf{m}_i^{\prime},\mathbf{y}_i\right) L=viVL(mi,yi)
(y,和m都是标签)

模型优化部分

min ⁡ Z , U , E P , E A ∥ U − X ∥ F 2 + α 1 tr ⁡ ( Z ⊤ L ~ A Z ) + α 2 ∥ U U ⊤ − ( A ⊙ E P + ( 1 − A ) ⊙ E A ) ∥ F 2 \begin{aligned}&\min_{\mathbf{Z},\mathbf{U},\mathbf{E}_P,\mathbf{E}_A}\left\|\mathbf{U}-\mathbf{X}\right\|_F^2+\alpha_1\operatorname{tr}\left(\mathbf{Z}^\top\tilde{\mathbf{L}}_\mathcal{A}\mathbf{Z}\right)\\&+\alpha_2\left\|\mathbf{U}\mathbf{U}^\top-(\mathbf{A}\odot\mathbf{E}_P+(\mathbf{1}-\mathbf{A})\odot\mathbf{E}_A)\right\|_F^2\end{aligned} Z,U,EP,EAminUXF2+α1tr(ZL~AZ)+α2 UU(AEP+(1A)EA) F2
我们对上述公式求偏导,为了简化,我们让:
A ′ = ( 1 − A ) \mathbf{A^{\prime}}=(\mathbf{1-A}) A=(1A)以及: A = A ⊙ E P + A ′ ⊙ E A ) \mathcal{A}=\mathbf{A}\odot\mathbf{E}_P+\mathbf{A}'\odot\mathbf{E}_A) A=AEP+AEA)
偏导结果如下:
2 ( U − X ) + 2 α 2 ( 2 U U ⊤ − A ˉ ) U = 0 2 α 1 L ~ A Z = 0 V P + 2 α 2 ( − A ⊙ U ^ P + A ⊙ A ⊙ E P ) = 0 V A + 2 α 2 ( − A ′ ⊙ U ^ A + A ′ ⊙ A ′ ⊙ E A ) = 0 \begin{aligned} &\begin{aligned}2(\mathbf{U}-\mathbf{X})+2\alpha_2(2\mathbf{U}\mathbf{U}^\top-\bar{\mathcal{A}})\mathbf{U}=0\end{aligned} \\ &2\alpha_1\mathbf{\tilde{L}}_A\mathbf{Z}=0 \\ &\begin{aligned}\mathbf{V}_P+2\alpha_2(-\mathbf{A}\odot\hat{\mathbf{U}}_P+\mathbf{A}\odot\mathbf{A}\odot\mathbf{E}_P)=0\end{aligned} \\ &\begin{aligned}\mathbf{V}_A+2\alpha_2(-\mathbf{A}'\odot\hat{\mathbf{U}}_A+\mathbf{A}'\odot\mathbf{A}'\odot\mathbf{E}_A)=0\end{aligned} \end{aligned} 2(UX)+2α2(2UUAˉ)U=02α1L~AZ=0VP+2α2(AU^P+AAEP)=0VA+2α2(AU^A+AAEA)=0
在这里, A ˉ \bar{\mathcal{A}} Aˉ是规范化邻接矩阵
V P i j = 1 2 α 1 A i j ∥ Z i − Z j ∥ 2 2 , A ˉ , V A i j = 1 2 α 1 A i j ′ ∥ Z i − Z j ∥ 2 2 , U ^ P = U U ⊤ − A ′ ⊙ E A , U ^ A = U U ⊤ − A ⊙ E P \begin{align} \mathbf{V}_{Pij}=\frac12\alpha_1\mathbf{A}_{ij}\|\mathbf{Z}_{i}-\mathbf{Z}_{j}\|_2^2,\bar{\mathbf{A}},\mathbf{V}_{Aij}=\frac12\alpha_1\mathbf{A}_{ij}^{\prime}\|\mathbf{Z}_{i}-\mathbf{Z}_{j}\|_2^2, \\ \hat{\mathbf{U}}_{P}=\mathbf{UU}^{\top}-\mathbf{A}^{\prime}\odot\mathbf{E}_{A},\hat{\mathbf{U}}_{A}=\mathbf{UU}^{\top}-\mathbf{A}\odot\mathbf{E}_{P} \end{align} VPij=21α1AijZiZj22,Aˉ,VAij=21α1AijZiZj22,U^P=UUAEA,U^A=UUAEP
这个迭代关系关于第k层和第k+1层模型可以表示为:
U k + 1 = X − α 2 ( 2 U k U k ∣ − A ˉ ) U k Z k + 1 = A ˉ Z k E P k + 1 = ( 2 α 2 A ⊙ U ^ P k − V P k ) / ( 2 α 2 A ⊙ A ) E A k + 1 1 = ( 2 α 2 A ′ ⊙ U ^ A k − V A k ) / ( 2 α 2 A ′ ⊙ A ′ ) \begin{aligned} &\mathbf{U}^{k+1}=\mathbf{X}-\alpha_2(2\mathbf{U}^\mathbf{k}\mathbf{U}^\mathbf{k}|-\bar{\mathcal{A}})\mathbf{U}^k \\ &\mathbf{Z}^{k+1}=\bar{\mathcal{A}}\mathbf{Z}^k \\ &\mathbf{E}_{P}^{k+1}=(2\alpha_{2}\mathbf{A}\odot\hat{\mathbf{U}}_{P}^{k}-\mathbf{V}_{P}^{k})/(2\alpha_{2}\mathbf{A}\odot\mathbf{A}) \\ &\mathbf{E}_A^{k+1}\begin{aligned}^1=(2\alpha_2\mathbf{A}^{\prime}\odot\hat{\mathbf{U}}_A^k-\mathbf{V}_A^k)/(2\alpha_2\mathbf{A'}\odot\mathbf{A'})\end{aligned} \end{aligned} Uk+1=Xα2(2UkUkAˉ)UkZk+1=AˉZkEPk+1=(2α2AU^PkVPk)/(2α2AA)EAk+11=(2α2AU^AkVAk)/(2α2AA)
V i j k = 1 2 α 1 A i j ∥ Z i k + 1 − Z j k + 1 ∥ 2 2 , U ^ k = U k + 1 U k + 1 − A ′ ⊙ E A \mathbf{V}_{ij}^k\quad=\quad\frac12\alpha_1\mathbf{A}_{ij}\|\mathbf{Z}_i^{k+1}-\mathbf{Z}_j^{k+1}\|_2^2,\quad\hat{\mathbf{U}}^k\quad=\mathbf{U}^{k+1}\mathbf{U}^{k+1} -\mathbf{A}^{\prime}\odot\mathbf{E}_A Vijk=21α1AijZik+1Zjk+122,U^k=Uk+1Uk+1AEA
为了增加模型的表达能力,我们将U的公式更正:
U k + 1 = X − α 2 σ [ ( 2 U k U k ⊤ − A ˉ ) U k W U ] \mathbf{U}^{k+1}=\mathbf{X}-\alpha_2\sigma[(2\mathbf{U}^\mathbf{k}\mathbf{U}^\mathbf{k}\top-\bar{\mathcal{A}})\mathbf{U}^k\mathbf{W}_\mathbf{U}] Uk+1=Xα2σ[(2UkUkAˉ)UkWU]
U k U k ⊤ − A ˉ \mathbf{U^{k}U^k}^\top-\bar{\mathcal{A}} UkUkAˉ表示重构的邻接矩阵和邻接矩阵之间的差异,整个公式表示特征在消除差异同时保留共性的能力

实验结果

文章配图

总结:

将Feature proximity 和Structure proximity结合,并利用自适应删边/加边,让两者逐渐趋同又存异,一个挺有意思的idea,理论上可以捕获更多的异配信息.
但是,实验只在两个异配图上做(Squirrel,Chameleon),仍需要部分实验证明其于其他数据集上也充分有效

  • 23
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值