Rethinking and SimplifyingBootstrapped Graph Latent

发表于:AAAI24
推荐指数: #paper/⭐⭐
领域:图增强工业实现

背景/贡献

曾经的图增强方法:

很多都需要负样本,并且以前的对比学习,需要对比头

做出的解决思路:

只用正样本+MLP去预测另外一个分支的嵌入,不需要负样本和对比头

文章配图

实验过程

实验流程

首先,两个原始图通过两个增强,得到两个增强图.然后,通过两个不同样式的编码器得到两组特征嵌入H1,H2.之后,上面的嵌入H1通过1层MLP(线性层)得到嵌入Z,将Z与嵌入H2计算对比损失
(为了方便,(博主)我描述上面的编码器为GNN encoder1,特征为H1,下面的编码器为GNN encoder2,特征为H2)

消融实验

根据如上框架,做消融实验
文章配图
如上消融实验证明,在BGRL框架中,EMA更新下面的GNN encoder2不是必须要的,所以作者采用了将上回合的GNN encoder1的参数复制到了这一轮GNN encoder2中
必要的有两点:BGRL成功的关键在于图增强和线性预测器(如上图P)

为线性预测器设置初始化权重的策略:

W p = 1 N − 1 H T H . \mathbf{W}_p=\frac{1}{N-1}\mathbf{H}^{\mathsf{T}}\mathbf{H}. Wp=N11HTH.

完整流程

文章配图

首先,生成正样本对:

E t = B e r n o u l l i ( E , 1 − p e ) , 0 < p e < 1 , X t = B e r n o u l l i ( X , 1 − p f ) , 0 < p f < 1 , \mathcal{E}_{t}=\mathrm{Bernoulli}(\mathcal{E},1-p_e),0<p_e<1,\\\mathbf{X}_{t}=\mathrm{Bernoulli}(\mathbf{X},1-p_f),0<p_f<1, Et=Bernoulli(E,1pe),0<pe<1,Xt=Bernoulli(X,1pf),0<pf<1,
即:通过贝努力分布生成边增强,节点增强.

数据增强复用

其将上一轮生成的H1,作为本轮生成的H2,并将H1的编码器复制到H2中,减少了编码器生成数据的开销

编码器参数更新

我们不采用用GNN encoder1参数动量更新GNN encoder2的方式,而是采用将GNN encoder2复制上一轮GNN encoder1的方式

预测器参数的生成:

P t = H ˉ t − 1 ′ ⊤ H ˉ t − 1 ′ N − 1 , \mathbf{P}_{t}=\frac{\mathbf{\bar{H}}_{t-1}^{'\top}\mathbf{\bar{H}}_{t-1}^{'}}{N-1}, Pt=N1Hˉt1Hˉt1,
对于H,我们对其进行标准化,得到:
H ‾ ( t − 1 , i ) ′ = H ( t − 1 , i ) ′ − m ∣ ∣ H ( t − 1 , i ) ′ − m ∣ ∣ 2 , \overline{\mathbf{H}}_{(t-1,i)}^{\prime}=\frac{\mathbf{H}_{(t-1,i)}^{\prime}-\mathbf{m}}{||\mathbf{H}_{(t-1,i)}^{\prime}-\mathbf{m}||_{2}}, H(t1,i)=∣∣H(t1,i)m2H(t1,i)m,
这样,
Z t = H t P t . \mathbf{Z}_t=\mathbf{H}_t\mathbf{P}_t. Zt=HtPt.
L θ = 1 − 1 N ∑ i = 1 N Z ( t , i ) H ( t − 1 , i ) ′ ⊤ ∣ ∣ Z ( t , i ) ∣ ∣ 2 ∣ ∣ H ( t − 1 , i ) ′ ∣ ∣ 2 . \mathcal{L}_\theta=1-\frac1N\sum_{i=1}^N\frac{\mathcal{Z}_{(t,i)}\mathcal{H}_{(t-1,i)}^{^{\prime}\top}}{||\mathcal{Z}_{(t,i)}||_2||\mathcal{H}_{(t-1,i)}^{^{\prime}}||_2}. Lθ=1N1i=1N∣∣Z(t,i)2∣∣H(t1,i)2Z(t,i)H(t1,i).

总结:

在这个将对比学习越做越复杂,参数越多,攀比正确率的时代,作者做了减法,去掉了负样本,以及映射头,并对图增强数据等进行了复用,极大减少了图对比的开销,把图对比在工业界的应用往前推了一步

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值