IdmGAE Importance-Inspired Dynamic Masking for Graph Autoencoders

sigir24
#paper/⭐
不要读这篇论文以及笔记了,没有用的东西。。这采样技术都是21-23年的论文的技术了,到24年还在用,也没有理论支撑。。。后悔读了

请添加图片描述

贡献:利用节点度和节点相似性去构造自适应增强

增强

构造度矩阵: D ∈ R N × d max ⁡ D \in \mathbb{R}^{N\times d_{\max}} DRN×dmax。其中,dmax是度的最大值
基于原始特征,可以构造相似性矩阵:
S 0 = M e a n ( S i m ( X ⋅ X T ) ) , S 0 ∈ R N × 1 S_0=\mathrm{Mean}(\mathrm{Sim}(\mathcal{X}\cdot\mathcal{X}^T)),S_0\in\mathbb{R}^{N\times1} S0=Mean(Sim(XXT)),S0RN×1
我们构造如下重要性分数矩阵:
P = S o f t m a x ( σ ( M L P ( D ⊕ S ) ) ) P=\mathrm{Softmax}(\sigma(MLP(D\oplus S))) P=Softmax(σ(MLP(DS)))其中, ⊕ \oplus 代表拼接操作. σ \sigma σ代表sigmoid激活函数
我们根据MLP学习重要性分数
L s a m ( θ ) = − 1 ∣ V ‾ ∣ ∑ ω ‾ log ⁡ ( P θ i ) ⋅ ( 1 − x i ⊤ z i ∥ x i ∥ ⋅ ∥ z i ∥ ) γ \mathcal{L}_{\mathrm{sam}}(\theta)=-\frac{1}{|\overline{{\mathcal{V}}}|} \sum_{\overline{{\boldsymbol{\omega}}}}\operatorname{log}(P_{\theta}^{\boldsymbol{i}})\cdot\left(1-\frac{x_{\boldsymbol{i}}^{\top}z_{\boldsymbol{i}}}{\|x_{\boldsymbol{i}}\|\cdot\|z_{\boldsymbol{i}}\|}\right)^{\boldsymbol{\gamma}} Lsam(θ)=V1ωlog(Pθi)(1xizixizi)γ
x是原始特征,z是重构特征, γ \gamma γ是缩放系数

动态采样算法

请添加图片描述

损失

L = L sce + ξ L sam , \mathcal{L}=\mathcal{L}_\text{sce}+\xi\mathcal{L}_\text{sam}, L=Lsce+ξLsam,
sam是采样损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值