Towards Self-supervised Learning on Graphs with Heterophily

推荐指数: #paper/⭐
发表于: CIKM22

一句话总结:本文通过重构相似性矩阵来生成两种特征增强方法.通过对比学习来进行训练.值得一题的一点是他在对比学习中,用了X得到的特征和AX的对比.还是有一丢丢创新性的

文章配图

主要工作:

图增强

特征相似矩阵

S ~ i j F = cos ⁡ ( x i , x j ) = x i ⋅ x j ∣ x i ∣ ∣ x j ∣ , \widetilde{S}_{ij}^F=\cos\left(x_i,x_j\right)=\frac{x_i\cdot x_j}{|x_i|\left|x_j\right|}, S ijF=cos(xi,xj)=xixjxixj,
其中,x是原始特征

参数化相似性矩阵

S ~ L = cos ⁡ ( E S , E S ⊤ ) \tilde{S}^L=\cos{(E_S,E_S^\top)} S~L=cos(ES,ES)
E S = σ ( E S ( l − 1 ) ⊙ W S ( l ) ) , \mathbf{E}_S=\sigma\left(\mathbf{E}_S^{(l-1)}\odot\mathbf{W}_S^{(l)}\right), ES=σ(ES(l1)WS(l)),
其中, E s ( 0 ) = X E_{s}^{(0)}=X Es(0)=X(即原始特征矩阵), ⊙ \odot 是hadamard积. σ \sigma σ表示非线性操作

重构相似性矩阵

A ~ i j = { S ~ i j ∗ , S ~ i j ∗ ∈ k ( S ~ i ∗ ) 0 , S ~ i j ∗ ∉ k ( S ~ i ∗ ) \tilde{A}_{ij}=\begin{cases}\tilde{\mathrm{S}}_{ij}^*,&\tilde{\mathrm{S}}_{ij}^*\in k\left(\tilde{\mathrm{S}}_i^*\right)\\0,&\tilde{\mathrm{S}}_{ij}^*\notin k\left(\tilde{\mathrm{S}}_i^*\right)\end{cases} A~ij= S~ij,0,S~ijk(S~i)S~ij/k(S~i)
k ( ⋅ ) k(\cdot) k()代表与节点i相连的top-k近的节点集.

数据增强

A ~ = A ⊙ M E \widetilde{A}=A\odot M_{\mathbf{E}} A =AME
其中, M E M_{E} ME通过 p E p_{E} pE二项式分布得到
X ~ = X ⊙ M F , \widetilde{X}=X\odot M_{\mathbf{F}}, X =XMF,

对比框架

编码器

H ~ = σ ( X ~ W 1 ) W 2 \tilde{H}=\sigma(\tilde{X}W_1)W_2 H~=σ(X~W1)W2
(可以理解为两层mlp)
L O = ∥ H ~ 1 − H ~ 2 ∥ F 2 ⏟ L i n v + λ ( ∥ H ~ 1 ⊤ H ~ 1 − I ∥ F 2 + ∥ H ~ 2 ⊤ H ~ 2 − I ∥ F 2 ) ⏟ L d e c , \mathcal{L}_{O}=\underbrace{\left\|\tilde{H}_1-\tilde{H}_2\right\|_F^2}_{\mathcal{L}_{inv}}+\underbrace{\lambda\left(\left\|\tilde{H}_1^\top\tilde{H}_1-I\right\|_F^2+\left\|\tilde{H}_2^\top\tilde{H}_2-I\right\|_F^2\right)}_{\mathcal{L}_{dec}}, LO=Linv H~1H~2 F2+Ldec λ( H~1H~1I F2+ H~2H~2I F2),
L N = − ∑ r = 1 R E v i ∈ V ∣ log ⁡ exp ⁡ ( ⟨ s ~ i r , h ~ i ⟩ / τ ) ∑ v k ∈ V exp ⁡ ( ⟨ h ~ k , h ~ i ⟩ / τ ) ∣ , \mathcal{L}_N=-\sum_{r=1}^R\mathbb{E}_{v_i\in\mathcal{V}}\left|\log\frac{\exp\left(\langle\tilde{s}_i^r,\tilde{h}_i\rangle/\tau\right)}{\sum_{v_k\in\mathcal{V}}\exp\left(\langle\tilde{h}_k,\tilde{h}_i\rangle/\tau\right)}\right|, LN=r=1REviV logvkVexp(h~k,h~i/τ)exp(s~ir,h~i/τ) ,
其中, s ~ i r = γ r ( A ~ r h ~ i ) \tilde{s}_i^r=\gamma_r\left(\tilde{A}^r\tilde{h}_i\right) s~ir=γr(A~rh~i).这样,这个式子就相当于X和AX的对比了. s ~ r \tilde{s}^r s~r代表节点v的自适应r跳邻居表征 γ r \gamma_{r} γr表示r层的自适应参数.

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
近年来,半监督深度面部表情识别成为了人们关注的热点问题之一。在这个领域,研究人员一直致力于利用少量有标签的数据和大量无标签的数据来提高面部表情识别的准确性和鲁棒性。Adaptive是一种有效的半监督学习方法,它能够自适应地利用标签和无标签数据,使得深度学习模型在应用于面部表情识别时更加有效。 半监督学习是一种机器学习方法,利用少量有标签的数据和大量无标签的数据来训练模型。在面部表情识别中,往往很难获取大量有标签的数据,而无标签数据却很容易获取,因此半监督学习成为了一种有吸引力的解决方案。通过利用Adaptive方法,研究人员可以更好地利用无标签数据,提高模型的泛化能力和鲁棒性,从而提升面部表情识别的准确性。 Adaptive方法还可以帮助模型在数据分布变化时自适应地调整,使得模型更具灵活性和稳健性。在面部表情识别任务中,由于不同环境和条件下的面部表情具有差性,Adaptive方法能够使模型更好地适应这种差,提高识别的鲁棒性。 总之,半监督深度面部表情识别与Adaptive方法的结合,有望提高面部表情识别的准确性和鲁棒性,为人们提供更加高效和可靠的面部表情识别技术。相信随着更多研究和实践的开展,半监督深度面部表情识别将迎来更加广阔的发展前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值