行人重识别 PCB-RPP

什么是行人重识别(ReID)

如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一ID的行人图或行人视频。


ReID(Person Re-identification)任务描述[2]

 

为什么需要ReID呢?

因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。

 

ReID与人脸识别有什么联系和区别?

都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。

做ReID的话,一般从两方面入手:

A、特征工程,设计网络来学习不同场景下都general的visual feature,用probe-gallery的特征相关性来作为ranking的依据,一般直接Softmax分类。

B、度量学习,设计损失函数,用多张图像的label来约束它们特征之间的关系,使学到的特征尽量类内间隔短,类间间隔大。

 

PCB-RPP[1],2017

早期比较经典的文章,方法简洁明了。

main contribution:

1. 提出了均匀分块的 Part-based Convolutional Baseline(PCB),探讨了较优的块间组合方式

2. 提出了基于 parts 的 Refined part pooling(RPP),用注意力机制来对齐 parts


PCB框架[1]

如上图所示,PCB框架的流程是:

1、对输入384*128行人图提取深度特征(ResNet50),把最后一个block( averagepooling前)的下采样层丢弃掉,得到空间大小 24*8*2048的 tensor T

2、按照水平方向分成均匀分成6parts,即6个空间大小 4*8*2048 tensor,然后各自进行 average pooling,得到6个column vectors g

3、使用1*1卷积对g降维通道数,然后接6个FC层(权值不共享),Softmax进行分类

4、训练时等于有 6个cross-entropy loss;测试时则将 6个 vectors h 合并在一起,再算相似度

这里有几种组合方式和超参可以探讨:

A、Deep feature的空间维度大小?该分成多少parts?

B、把6个column vector h 先 average pooling 成 1个 vector,再 FC 分类?

C、6个FC层之间的权值是否共享?

作者在文中做了实验来对比结果,找到最优的组合方案~~

至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。比如part1,能更有针对性地根据头部信息来分类~~


RPP框架[1]

讲完了PCB,我们来看RPP~

RPP本质上就是个attention module,目标是把6 parts 对应的空间分布进行软权值分配,进而对齐parts(PCB中均匀分割6parts 的过程,其实可看成人为地 hard attention,只把当前part空间权值设为1,其他parts都为0)

如上图所示,RPP思路:

1、把深度特征tensor T 中每个column vectors f 都分为6类(假设共有6个parts),文中是通过线性函数加Softmax来实现(其实就类似用1*1卷积来作segmentation一样)

 

2、把每个part对应的attention map 权值叠加回 tensor T 里(即上图的 GAP过程),得到各 part 的spatial 空间压缩后的 feature vector g ~ 后续步骤都和PCB一样~

PCB-RPP训练流程:


PCB-RPP训练流程[1]

文中为了保证学到的是part based attention map来对齐parts,故特意在预训练完PCB后,在Step3处先fix住PCB里所有层的参数,单独训练 part classifier。如下图所示,如果不加Step 3的限制,出来的6个attention map 将很随机,性能也会下降。


attention map[1]下图是加了Step3的效果

从实验结果看,加了RPP对MAP提升还是很大的:


Results[1]

 

总结:

文中PCB的思想虽然简单,但是后续CVPR2018中各种part-based ReID文章(各种 Multi-scale, multi-level part fusion 啥的)提供了参考价值。特别是云从科技的这篇MGN[2],更是将各种粒度的parts 和 triplet loss+ Softmax loss玩得淋漓尽致~
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值