数据结构实验:连通分量个数
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
输入
第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。
输出
每行一个整数,连通分量个数。
示例输入
2 3 1 1 2 3 2 3 2 1 2
示例输出
2 1#include<bits/stdc++.h> using namespace std; int main() { int a[101]; int t,n,m,i,u,v; cin>>t; while (t--) { cin>>n>>m; for (i=0;i<=n;i++) a[i]=i; for (i=0;i<m;i++) { cin>>u>>v; while (u!=a[u]) u=a[u]; while (v!=a[v]) v=a[v]; if (u!=v) a[u]=v; } int k=0; for (i=1;i<=n;i++) { if (a[i]==i) k++; } cout<<k<<endl; } return 0; }