数据结构实验:连通分量个数

数据结构实验:连通分量个数

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

 在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
 

输入

 第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。

输出

 每行一个整数,连通分量个数。

示例输入

2
3 1
1 2
3 2
3 2
1 2

示例输出

2
1

#include<bits/stdc++.h>

using namespace std;

int main()
{
       int a[101];
       int t,n,m,i,u,v;
       cin>>t;
       while (t--)
       {
                cin>>n>>m;
                for (i=0;i<=n;i++)
                a[i]=i;
                for (i=0;i<m;i++)
                {
                       cin>>u>>v;
                       while (u!=a[u])
                       u=a[u];
                       while (v!=a[v])
                       v=a[v];
                       if (u!=v)
                       a[u]=v;
                }
                int k=0;
                for (i=1;i<=n;i++)
                {
                         if (a[i]==i)
                         k++;
                }
                cout<<k<<endl;
       }
       return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值