User: 讲解下这篇文章
Kimi: 这篇文章是关于一个名为BIOCLIP的新型视觉基础模型,它是为了生物学的图像识别任务而设计的。下面是对文章的主要内容进行的概述:
标题
- BIOCLIP: A Vision Foundation Model for the Tree of Life
作者与机构
- 作者包括Samuel Stevens, Jiaman Wu, Matthew J Thompson等人,他们来自俄亥俄州立大学、微软研究院、加州大学欧文分校和伦斯勒理工学院。
摘要
- 文章指出,自然界的图像,尤其是由无人机、手机等设备拍摄的图像,正在成为生物学信息的重要来源。
- 尽管计算机视觉技术在提取图像中的生物学相关信息方面取得了巨大进展,但大多数现有方法都是为特定任务设计的,不易适应或扩展到新问题、新环境和新数据集。
- 作者提出了开发一个通用的生物图像视觉模型的需求,并为此创建并发布了TREEOFLIFE-10M,这是一个包含超过1000万张图像的大规模、多样化的机器学习数据集,涵盖了生命之树上的454,000个分类群。
- 接着,作者开发了BIOCLIP,这是一个利用TREEOFLIFE-10M数据集的独特属性(包括丰富的植物、动物和真菌图像以及丰富的结构化生物学知识)的生物基础模型。
- 通过在多个细粒度生物学分类任务上的严格基准测试,BIOCLIP在性能上显著优于现有基线(提高了16%到17%的绝对精度)。
引言
- 介绍了数字图像和计算机视觉在从进化生物学到生态学和生物多样性研究中的快速普及。
- 强调了将大量图像转换为可操作信息(如物种分类、个体识别和特征检测)的能力,并对物种划分、适应机制理解、种群结构估计和生物多样性监测与保护等任务进行了加速和促进。
TREEOFLIFE-10M数据集
- 描述了创建TREEOFLIFE-10M数据集的过程,这是一个包含超过1000万张图像的数据集,涵盖了生命之树上的454,000个分类群。
- 数据集整合了现有的高质量数据集,如iNat21和BIOSCAN-1M,并包括从Encyclopedia of Life获取的新策划图像。
BIOCLIP模型
- 介绍了BIOCLIP模型,它是基于OpenAI的CLIP检查点进行初始化,并在TREEOFLIFE-10M上继续预训练。
- 讨论了使用CLIP风格的多模态对比学习目标与丰富的生物学分类学结合的优势。
实验
- 描述了BIOCLIP在10个细粒度图像分类数据集上的性能评估,包括动物、植物和真菌。
- 展示了BIOCLIP在零样本和少样本设置中的强性能,并显著优于CLIP和OpenCLIP。
结论
- 通过广泛的评估,BIOCLIP被证明是一个在零样本和少样本设置中都表现出色的生物学细粒度分类器。
- 作者提出,未来的工作将进一步扩大数据规模,例如整合超过100M的iNaturalist研究级图像,并收集更丰富的物种外观文本描述。
致谢
- 对Imageomics团队、BIOSCAN-1M和iNaturalist团队以及EOL的Jennifer Hammock表示感谢。
文章还包括了参考文献列表,提供了相关工作的进一步阅读和研究背景。如果你需要更详细的信息或对特定部分有疑问,请告诉我,我会进一步解释。
User: 翻译摘要和介绍
Kimi: 当然,以下是文章摘要和引言部分的翻译:
摘要
自然界的图像,由各种相机收集,从无人机到个人手机,日益成为生物学信息的丰富来源。计算方法和工具,特别是计算机视觉,用于从图像中提取与生物学相关的信息,服务于科学和保护事业。然而,这些大多为特定任务设计的定制方法,不易适应或扩展到新问题、新环境和新数据集。迫切需要一个通用的生物图像视觉模型。为了解决这个问题,我们策划并发布了TREEOFLIFE-10M,这是迄今为止最大和最多样化的生物图像机器学习数据集。然后,我们开发了BIOCLIP,一个生命之树的基础模型,利用TREEOFLIFE-10M所捕捉的生物学的独特属性,即植物、动物和真菌的图像的丰富性和多样性,以及丰富的结构化生物学知识的可用性。我们通过各种细粒度生物学分类任务对我们的方法进行了严格的基准测试,并发现BIOCLIP在一致性和实质性上都优于现有的基线(提高了16%到17%的绝对精度)。内在评估揭示了BIOCLIP已经学习到了符合生命之树的层次表示,这为其强大的泛化能力提供了线索。
引言
数字图像和计算机视觉正迅速成为研究自然世界的工具,从进化生物学到生态学和生物多样性。将来自博物馆、相机陷阱和公民科学平台的大量图像迅速转换为可操作信息(例如物种分类、个体识别和特征检测)的能力,加速并促进了物种划分、适应机制理解、种群结构