KIMI带我读论文-CVPR2024-《BIOCLIP: A Vision Foundation Model for the Tree of Life》

User: 讲解下这篇文章

Kimi: 这篇文章是关于一个名为BIOCLIP的新型视觉基础模型,它是为了生物学的图像识别任务而设计的。下面是对文章的主要内容进行的概述:

标题

  • BIOCLIP: A Vision Foundation Model for the Tree of Life

作者与机构

  • 作者包括Samuel Stevens, Jiaman Wu, Matthew J Thompson等人,他们来自俄亥俄州立大学、微软研究院、加州大学欧文分校和伦斯勒理工学院。

摘要

  • 文章指出,自然界的图像,尤其是由无人机、手机等设备拍摄的图像,正在成为生物学信息的重要来源。
  • 尽管计算机视觉技术在提取图像中的生物学相关信息方面取得了巨大进展,但大多数现有方法都是为特定任务设计的,不易适应或扩展到新问题、新环境和新数据集。
  • 作者提出了开发一个通用的生物图像视觉模型的需求,并为此创建并发布了TREEOFLIFE-10M,这是一个包含超过1000万张图像的大规模、多样化的机器学习数据集,涵盖了生命之树上的454,000个分类群。
  • 接着,作者开发了BIOCLIP,这是一个利用TREEOFLIFE-10M数据集的独特属性(包括丰富的植物、动物和真菌图像以及丰富的结构化生物学知识)的生物基础模型。
  • 通过在多个细粒度生物学分类任务上的严格基准测试,BIOCLIP在性能上显著优于现有基线(提高了16%到17%的绝对精度)。

引言

  • 介绍了数字图像和计算机视觉在从进化生物学到生态学和生物多样性研究中的快速普及。
  • 强调了将大量图像转换为可操作信息(如物种分类、个体识别和特征检测)的能力,并对物种划分、适应机制理解、种群结构估计和生物多样性监测与保护等任务进行了加速和促进。

TREEOFLIFE-10M数据集

  • 描述了创建TREEOFLIFE-10M数据集的过程,这是一个包含超过1000万张图像的数据集,涵盖了生命之树上的454,000个分类群。
  • 数据集整合了现有的高质量数据集,如iNat21和BIOSCAN-1M,并包括从Encyclopedia of Life获取的新策划图像。

BIOCLIP模型

  • 介绍了BIOCLIP模型,它是基于OpenAI的CLIP检查点进行初始化,并在TREEOFLIFE-10M上继续预训练。
  • 讨论了使用CLIP风格的多模态对比学习目标与丰富的生物学分类学结合的优势。

实验

  • 描述了BIOCLIP在10个细粒度图像分类数据集上的性能评估,包括动物、植物和真菌。
  • 展示了BIOCLIP在零样本和少样本设置中的强性能,并显著优于CLIP和OpenCLIP。

结论

  • 通过广泛的评估,BIOCLIP被证明是一个在零样本和少样本设置中都表现出色的生物学细粒度分类器。
  • 作者提出,未来的工作将进一步扩大数据规模,例如整合超过100M的iNaturalist研究级图像,并收集更丰富的物种外观文本描述。

致谢

  • 对Imageomics团队、BIOSCAN-1M和iNaturalist团队以及EOL的Jennifer Hammock表示感谢。

文章还包括了参考文献列表,提供了相关工作的进一步阅读和研究背景。如果你需要更详细的信息或对特定部分有疑问,请告诉我,我会进一步解释。

User: 翻译摘要和介绍

Kimi: 当然,以下是文章摘要和引言部分的翻译:

摘要

自然界的图像,由各种相机收集,从无人机到个人手机,日益成为生物学信息的丰富来源。计算方法和工具,特别是计算机视觉,用于从图像中提取与生物学相关的信息,服务于科学和保护事业。然而,这些大多为特定任务设计的定制方法,不易适应或扩展到新问题、新环境和新数据集。迫切需要一个通用的生物图像视觉模型。为了解决这个问题,我们策划并发布了TREEOFLIFE-10M,这是迄今为止最大和最多样化的生物图像机器学习数据集。然后,我们开发了BIOCLIP,一个生命之树的基础模型,利用TREEOFLIFE-10M所捕捉的生物学的独特属性,即植物、动物和真菌的图像的丰富性和多样性,以及丰富的结构化生物学知识的可用性。我们通过各种细粒度生物学分类任务对我们的方法进行了严格的基准测试,并发现BIOCLIP在一致性和实质性上都优于现有的基线(提高了16%到17%的绝对精度)。内在评估揭示了BIOCLIP已经学习到了符合生命之树的层次表示,这为其强大的泛化能力提供了线索。

引言

数字图像和计算机视觉正迅速成为研究自然世界的工具,从进化生物学到生态学和生物多样性。将来自博物馆、相机陷阱和公民科学平台的大量图像迅速转换为可操作信息(例如物种分类、个体识别和特征检测)的能力,加速并促进了物种划分、适应机制理解、种群结构估计和生物多样性监测与保护等任务的新进展。然而,应用计算机视觉来回答生物学问题仍然是一个需要大量机器学习专业知识和努力的劳动密集型任务——生物学家必须手动标记足够的特定类群和任务的数据,并找到并训练一个适合该任务的模型。与此同时,基础模型如CLIP和GPT-3通过为广泛的任务启用零样本或少样本学习而具有非凡的价值。一个类比的生物学视觉基础模型,应该对跨越整个生命之树的任务有用,而不仅仅是它训练过的类群。这样的模型将显著降低将AI应用于生物学的门槛。

请注意,这是对原文的直译,可能需要根据上下文进一步调整以确保准确性和流畅性。如果你有任何特定部分需要更详细的解释或有其他问题,请随时告诉我。

User: tree of life是什么

Kimi: “Tree of Life”(生命之树)是一个生物学术语,用于描述所有生物之间进化关系的谱系图。这个概念基于查尔斯·达尔文的进化论,它将所有已知的生物种类通过共同的祖先联系起来,形成一个巨大的、分支的家族树。

生命之树的每个分支(或称为“枝”)代表一个特定的分类群,可以是物种、属、科、目、纲、门、界等不同的生物学分类等级。从最基础的细菌和古菌开始,生命之树向上分叉,逐渐演化出更复杂的多细胞生物,包括植物、真菌和动物等。

在生命之树的框架下,每个生物种类都可以找到其在进化史上的位置,显示了它们与其他生物的亲缘关系。例如,人类(Homo sapiens)位于动物界、脊索动物门、哺乳纲、灵长目、人科、人属中。

生命之树是生物学研究中的一个重要工具,它帮助科学家理解生物多样性的起源和演化过程,以及不同生物种类之间的相互关系。随着分子生物学和基因组学的发展,生命之树的构建变得更加精确,现在可以通过比较不同物种的DNA序列来推断它们之间的进化关系。

User: 本文方法

Kimi: 本文提出的方法主要围绕开发一个名为BIOCLIP的视觉基础模型,以及创建一个支持该模型的大规模、多样化的生物图像数据集TREEOFLIFE-10M。以下是文章中提到的关键方法步骤:

  1. 数据集创建(TREEOFLIFE-10M):

    • 策划并发布了TREEOFLIFE-10M,这是一个包含超过1000万张图像的数据集,涵盖了生命之树上的454,000个分类群。
    • 数据集整合了现有的高质量数据集,如iNat21和BIOSCAN-1M,并包括从Encyclopedia of Life获取的新策划图像。
  2. 模型开发(BIOCLIP):

    • BIOCLIP模型是基于OpenAI的CLIP检查点进行初始化的。
    • 利用CLIP的多模态对比学习目标,BIOCLIP通过将图像与相应的分类名称匹配来学习,这有助于模型泛化到训练中未见过的分类群。
  3. 预训练策略:

    • 采用CLIP风格的多模态对比学习与丰富的生物学分类学结合的策略。
    • 将分类学层次结构“扁平化”为一个称为分类名称的字符串,并使用这个名称来进行对比学习。
  4. 混合文本类型训练:

    • 提出了一种混合文本类型训练策略,即在训练过程中将不同的文本类型(例如分类学名称、科学名称、通用名称)混合使用。
    • 这种方法在测试时提供了更大的灵活性,即使只有通用物种名称由下游用户提供,BIOCLIP也能表现优异。
  5. 基准测试与评估:

    • 在包括新策划的RARE SPECIES数据集在内的10个细粒度图像分类数据集上评估BIOCLIP的性能。
    • 在零样本和少样本设置中,BIOCLIP都显示出比现有方法更高的性能。
  6. 内在评估:

    • 通过可视化技术(如t-SNE)评估BIOCLIP学习到的图像表示,以了解其泛化能力。
  7. 扩展性和应用潜力:

    • 讨论了BIOCLIP在低数据环境下的强性能,并探讨了其在生物学任务中的潜在应用,如物种分类、个体识别和特征检测。

文章中的方法体现了一种结合大规模数据集和先进机器学习技术来解决生物学问题的新途径,特别是在生物多样性和保护领域。通过BIOCLIP,研究人员希望能够降低将人工智能应用于生物学研究的门槛,并推动该领域的进步。

User: 本文方法的作用是什么

Kimi: 本文提出的方法的作用主要包括以下几点:

  1. 提高泛化能力:BIOCLIP模型通过学习TREEOFLIFE-10M数据集中的大规模和多样化的生物图像,提高了对未知分类群(即训练数据中未出现的分类群)的泛化能力。

  2. 支持零样本和少样本学习:BIOCLIP能够在只有少量或没有标注数据的情况下,对新的分类群进行分类,这对于数据稀缺的生物种类尤其重要。

  3. 细粒度分类:文章中的方法特别强调了对生物学图像进行细粒度分类的能力,这对于区分视觉上相似的物种或分类群至关重要。

  4. 数据集的丰富性和多样性:通过创建TREEOFLIFE-10M数据集,提供了一个包含广泛生物分类的图像资源,这有助于训练更为全面和鲁棒的模型。

  5. 利用生物学结构:BIOCLIP在预训练过程中利用了生物学分类的层次结构,这有助于模型更好地理解和表示生物之间的进化关系。

  6. 提高效率和可扩展性:通过使用CLIP风格的多模态对比学习目标,BIOCLIP能够更有效地从图像和文本对中学习,并且这种方法可以扩展到更大规模的数据集。

  7. 促进生物学研究和保护工作:BIOCLIP模型的高性能和泛化能力有助于加速生物学研究,特别是在物种识别、生物多样性监测和保护等领域。

  8. 降低AI应用门槛:通过提供一个通用的视觉模型,BIOCLIP降低了生物学家和研究人员将人工智能技术应用于生物学问题的技术门槛。

  9. 内在评估和可视化:通过内在评估,研究者可以更好地理解模型是如何学习和表示生物学知识的,这有助于进一步改进模型。

总之,本文提出的方法旨在通过结合大规模数据集和先进的机器学习技术,为生物学领域提供一个强大的工具,以支持和推动科学研究和保护工作。

User: 通过什么生物学应用来验证的?

Kimi: 本文通过以下生物学应用来验证BIOCLIP模型的性能:

  1. 细粒度图像分类:BIOCLIP在多个细粒度生物学分类任务上进行了评估,这些任务涵盖了动物、植物和真菌等不同的生物界。细粒度分类任务要求模型能够区分在视觉上非常相似的物种,这对于生物学研究和生物多样性保护至关重要。

  2. 零样本学习(Zero-Shot Learning):在零样本学习设置中,模型需要对在训练阶段未见过的类别进行分类。这在生物学中尤其重要,因为存在大量的物种,而且新物种的发现是持续不断的。BIOCLIP在零样本设置中表现出色,这证明了其强大的泛化能力。

  3. 少样本学习(Few-Shot Learning):在少样本学习设置中,模型只有很少的标记样本来学习新类别。这种能力对于数据稀缺的物种或者在数据收集成本高昂的情况下非常有用。BIOCLIP在少样本学习任务上也展现了很好的性能。

  4. RARE SPECIES数据集:作者特别创建了一个名为RARE SPECIES的新数据集,用于评估模型对未在训练中见过的物种的分类能力。这个数据集包含了国际自然保护联盟(IUCN)红色名录中列为近危、易危、濒危、极危或野外灭绝的物种。这个任务验证了BIOCLIP在面对生物多样性危机时的实用性和重要性。

  5. 植物病害分类:BIOCLIP还被用于植物病害的分类任务,这要求模型不仅要识别植物的种类,还要识别植物是否患有疾病以及疾病的种类。这在植物病理学和农业生产中是一个重要的应用。

  6. 内在评估:通过t-SNE可视化技术,研究者评估了BIOCLIP学习到的图像表示是否符合生物学分类的层次结构。这种评估揭示了模型如何理解和表示不同生物分类群之间的关系。

通过这些应用,BIOCLIP展示了其在生物学领域的广泛适用性和有效性,特别是在需要处理大量未知或数据稀缺物种的场景中。

User: 如何理解Why CLIP?这一节的内容

Kimi: 在文章中的"Why CLIP?"这一节,作者解释了为什么选择使用CLIP(Contrastive Language–Image Pre-training)模型作为BIOCLIP的基础,并对其在生物学领域的应用进行了讨论。以下是对这一节内容的理解:

  1. 丰富的标签空间:生物学领域的一个显著特点是其标签空间非常丰富。存在大量的分类标签(截至2022年有超过200万个已记录的物种),并且这些标签在层次化的分类学中相互关联。这种结构对于训练一个能够实现满意覆盖和泛化的基础模型是一个挑战。

  2. 层次化的标签结构:标签空间的结构是通过几个世纪的生物学研究积累起来的,为学习更好的泛化提供了非常丰富的信号。如果基础模型能够成功地编码标签空间的结构,即使模型之前没有见过某个特定物种,它也可能已经学习到了该物种相应属或科的良好表示。

  3. 多模态对比学习:CLIP使用多模态对比学习目标来训练两个单模态嵌入模型,一个视觉编码器和一个文本编码器。这种学习方法可以利用标签空间的层次结构,而这是通过将分类学层次结构嵌入到密集的标签空间中实现的,即通过将较高阶的分类学等级表示作为条件来嵌入较低阶的表示。

  4. 重新利用CLIP目标:尽管TREEOFLIFE-10M主要是用类标签进行标记的,而不是像图像标题那样的自由形式文本,但作者发现将CLIP的多模态对比学习目标重新用于学习符合分类学的层次化表示是一个新颖且非平凡的技术贡献。

  5. 与现有方法的比较:许多现有的视觉基础模型,如ResNet和Swin Transformer,采用监督分类目标,直接学习从输入图像到类索引的映射。结果,每个类标签被视为一个独特的符号,它们之间的关系被忽略了。BIOCLIP的关键认识是CLIP风格的多模态对比学习可以重新用于利用标签空间的层次结构。

  6. 技术贡献:将CLIP的多模态对比学习目标用于学习符合分类学的层次化表示,是文章的一个关键技术贡献,这在以往的研究中并不明显,因为通常的图像-文本预训练数据集并不包含如此丰富的层次化标签结构。

总结来说,"Why CLIP?"这一节强调了CLIP模型在处理具有丰富层次化标签空间的生物学数据时的优势,并解释了作者如何创新性地将CLIP的目标重新用于BIOCLIP模型,以实现更好的泛化能力和适应性。

User: 介绍一下Training and Evaluation Details这一节

Kimi: 在文章的"Training and Evaluation Details"这一节中,作者详细描述了BIOCLIP模型的训练和评估过程。以下是对这一节内容的介绍:

  1. 初始化和预训练

    • BIOCLIP模型从OpenAI的CLIP权重开始初始化,使用了一个ViT-B/16视觉变换器(vision transformer)图像编码器和一个77-token因果自回归变换器(autoregressive transformer)文本编码器。
    • 在TREEOFLIFE-10M数据集上继续预训练100个周期,使用余弦学习率调度策略。
  2. 训练硬件和设置

    • 使用8个NVIDIA A100-80GB GPU在2个节点上进行训练,全局批量大小为32,768。
    • 还在4个NVIDIA A100 GPU上,以较小的全局批量大小16,384在一个节点上训练了基线模型和多个消融模型。
  3. 超参数和训练细节

    • 所有超参数和训练细节都记录在附录D中,并且训练和评估代码是公开可用的。
  4. 评估任务

    • 在10个不同的分类任务上评估BIOCLIP,包括从Meta-Album、Birds 525和新策划的RARE SPECIES任务中选取的8个生物学相关任务。
    • 分类任务涵盖了生命之树中的所有四个多细胞界(动物、植物、真菌和原生生物),并具有多样化的图像分布(照片、显微镜图像、绘图和博物馆标本)。
  5. 零样本和少样本学习

    • 对于零样本学习,遵循与CLIP相同的程序。
    • 对于少样本学习,遵循SimpleShot的方法,使用最近质心分类器。
    • 对于k-shot学习,首先随机采样每个类别的k个示例,并从预训练模型的视觉编码器中获取图像嵌入。然后计算k个嵌入的平均特征向量作为每个类别的质心。
  6. 性能比较

    • 将BIOCLIP与原始的OpenAI CLIP和在LAION-400M上训练的OpenCLIP进行比较。
    • 还与ImageNet-21K预训练模型和DINO模型进行了比较,以评估少样本分类性能。
  7. 评估指标

    • 使用Top-1准确率作为分类任务的主要评估指标。
  8. 结果报告

    • 报告了不同模型在不同分类任务上的性能,包括零样本、单样本和五样本分类的Top-1准确率。

这一节提供了BIOCLIP模型训练和评估的全面细节,包括使用的硬件、训练周期、学习率调度、评估任务和性能比较方法。这些细节对于理解模型的性能和复现实验结果至关重要。

User: 本文方法的主要创新点是什么

Kimi: 本文的主要创新点可以概括为以下几个方面:

  1. TREEOFLIFE-10M数据集:创建并发布了迄今为止最大和最多样化的生物图像机器学习数据集,包含超过1000万张图像,涵盖生命之树上的454,000个分类群,这为训练和评估提供了丰富的资源。

  2. BIOCLIP模型:开发了一个针对生命之树的视觉基础模型,它利用TREEOFLIFE-10M数据集的独特属性,包括植物、动物和真菌的图像的丰富性和多样性,以及结构化生物学知识的可用性。

  3. 多模态对比学习:采用CLIP风格的多模态对比学习方法,通过将图像与其对应的分类名称匹配,使模型能够学习到符合生命之树层次结构的表示,这有助于模型泛化到未见过的分类群。

  4. 层次化表示学习:BIOCLIP模型不仅学习到物种级别的表示,还能够理解和表示生物学分类的层次结构,这在以往的视觉模型中并不常见。

  5. 混合文本类型训练策略:提出了一种混合不同文本类型(如分类学名称、科学名称、通用名称)的训练方法,提高了模型在不同命名习惯下的灵活性和泛化能力。

  6. 零样本和少样本学习性能:在零样本和少样本学习设置中,BIOCLIP模型显著优于现有基线,证明了其强大的泛化能力,这对于数据稀缺的生物种类尤其重要。

  7. 内在评估:通过t-SNE可视化等内在评估方法,展示了BIOCLIP学习到的图像表示如何更好地匹配生物学分类的层次结构。

  8. 跨领域的应用潜力:BIOCLIP模型在多种生物学分类任务上表现出色,包括细粒度分类、植物病害分类等,显示了其在不同生物学领域的广泛应用潜力。

这些创新点共同构成了BIOCLIP的核心优势,使其成为一个强大的工具,能够支持生物学研究和保护工作中的视觉识别任务。

User: tsne是如何评估的

Kimi: 在本文中,t-SNE(t-分布随机邻域嵌入)被用作一种可视化技术,用于评估BIOCLIP模型学习到的图像表示。t-SNE是一种降维方法,它可以将高维数据集嵌入到二维或三维空间中,同时尽可能地保持数据点在原始高维空间中的相对位置。这使得研究者能够直观地观察和分析数据点的分布和聚类情况。

以下是使用t-SNE评估BIOCLIP模型学习到的图像表示的步骤:

  1. 特征提取:首先,使用BIOCLIP模型的视觉编码器提取iNat21验证集(在训练期间未见过的数据)中图像的特征表示。

  2. 降维:将这些高维特征表示通过t-SNE算法降维到二维或三维空间,以便于可视化。

  3. 可视化:在二维或三维视图中,每个点代表一个图像,并且根据图像的分类标签对这些点进行着色。

  4. 分析聚类结构:通过观察不同分类标签的点在t-SNE图中的分布情况,可以评估模型是否能够学习到符合生物学分类层次结构的表示。如果同一分类的点在图中紧密聚集,并且与其他分类的点分开,这表明模型的表示具有较好的结构性。

  5. 层次结构评估:特别地,可以检查模型表示在不同分类层次(如门、纲、目、科、属、种)上的聚类效果,以评估模型是否能够捕捉到生命之树的层次关系。

  6. 比较分析:通过将BIOCLIP的t-SNE可视化结果与基线模型(如原始的CLIP模型)进行比较,可以直观地展示BIOCLIP在保持生物学层次结构方面的优势。

在本文中,t-SNE可视化显示BIOCLIP学习到的表示在更低的分类层次上(如目、科、属)产生了更加可分离的特征,而原始的CLIP模型在这些层次上的特征则显得较为混乱,缺乏清晰的结构。这表明BIOCLIP在捕捉生物学分类的精细结构方面具有优势。

User: 所以实验是在做分类任务吗

Kimi: 是的,本文中的实验主要是围绕分类任务进行的,尤其是在生物学领域中的细粒度图像分类任务。这些任务涉及到对不同生物种类的图像进行识别和分类,这些种类可能在视觉上非常相似,如不同物种的鸟类、植物或昆虫。实验的目的在于验证BIOCLIP模型在这些分类任务上的性能,特别是其在零样本(zero-shot)和少样本(few-shot)学习设置下的表现。

关键点概述:

  1. 细粒度分类:实验中的分类任务要求模型能够区分生物学上紧密相关的分类群,这通常需要模型具有高度的辨别能力。

  2. 零样本学习:在零样本学习设置中,模型需要对在训练阶段未出现过的类别进行分类。这是通过模型学习到的通用特征和层次化表示来实现的。

  3. 少样本学习:在少样本学习设置中,模型只有非常有限的标记样本来学习新类别。这种能力对于数据稀缺的分类群尤其重要。

  4. 新数据集创建:为了评估模型对未见分类群的泛化能力,作者创建了RARE SPECIES数据集,包含了IUCN红色名录中受威胁的物种。

  5. 性能评估:通过与其他基线模型(如原始的CLIP和OpenCLIP)进行比较,评估了BIOCLIP在多个分类任务上的性能。

  6. 内在评估:使用t-SNE等技术对模型学习到的表示进行可视化,以评估其是否符合生物学分类的层次结构。

  7. 跨领域应用:虽然实验主要集中在生物学分类任务上,但BIOCLIP模型的设计理念和训练方法也可能适用于其他领域的分类任务。

因此,可以说本文的实验确实是在进行分类任务,但这些任务是在具有挑战性的生物学领域中,并且特别关注模型在面对未见过的数据时的泛化能力。

  • 40
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值