yolo和paddle模型常见输出参数解惑

根据不同输出参数编写后处理,否则会报错

第一种

  • Concatoutput_dim_0 :变量,表示预测目标的数量,
  • 7:表示每个目标的七个参数:batch_id,x0,y0,x1,y1,cls_id,score

在这里插入图片描述

第二种

  • 85:每一行85个数值,5个center_x,center_y, width, height,score ,80个标签类别得分
  • 25200:三个尺度上的预测框总和 ( 80∗80∗3 + 40∗40∗3 + 20∗20∗3 ),每个网格三个预测框,后续需要非极大值抑制NMS处理
  • 1:没有批量预测推理,即每次输入推理一张图片

在这里插入图片描述

第三种

  • num_dets:表示其批次中每个图像中的目标数
  • det_boxes:表示 topk(100) 目标的坐标信息 [x0,y0,x1,y1] .
  • det_scores:表示每个 topk(100) 个对象的置信度分数
  • det_classes:表示每个 topk(100) 个对象的类别

在这里插入图片描述

第四种

在这里插入图片描述

第五种

在这里插入图片描述

第六种(paddlepaddle)

  • DynamicDimension :表示动态维度,一般是1
  • im_shape:图像经过resize后的大小,表示为H,W, DynamicDimension 表示batch维度
  • image:输入网络的图像,DynamicDimension 表示batch维度,如果输入图像大小为变长,则H,W为None
  • scale_factor:输入图像大小比真实图像大小,表示为scale_y, scale_x
  • multiclass_nms3_0.tmp_0:bbox, NMS的输出,形状为[N, 6], 其中N为预测框的个数,6为[class_id, score, x1, y1, x2, y2]
  • multiclass_nms3_0.tmp_2:bbox_num, 每张图片对应预测框的个数,例如batch_size为2,输出为[N1, N2], 表示第一张图包含N1个预测框,第二张图包含N2个预测框,并且预测框的总个数和NMS输出的第一维N相同
    在这里插入图片描述

yolo资料

在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Paddle训练好的YOLO模型进行TensorRT推理加速,可以大幅提高模型的推理速度。 以下是大致的步骤: 1. 转换模型格式:将Paddle训练好的YOLO模型转换为TensorRT可读取的格式,比如ONNX或TensorRT格式。 2. 构建TensorRT引擎:使用TensorRT API构建推理引擎,其中包括模型的输入输出设置、推理精度设置、推理策略设置等。 3. 加载数据:将需要推理的数据加载进TensorRT引擎。 4. 执行推理:调用TensorRT引擎的推理接口进行推理,得到结果。 具体步骤如下: 1. 安装Paddle和TensorRT,并确认两者版本兼容。 2. 将Paddle训练好的YOLO模型转换为ONNX格式或TensorRT格式。其中,转换为ONNX格式可以使用Paddle的 `paddle2onnx` 工具,转换为TensorRT格式可以使用TensorRT自带的 `uff-converter-tf` 工具。 3. 使用TensorRT API构建推理引擎。具体的代码实现可以参考TensorRT官方文档和示例代码。 4. 加载数据。对于YOLO模型,需要将输入数据进行预处理,包括图像的缩放、填充和通道的交换等操作。 5. 执行推理。调用TensorRT引擎的推理接口进行推理,得到结果。对于YOLO模型,需要对输出结果进行后处理,包括解码、非极大值抑制和类别置信度筛选等操作。 参考代码: ```python import pycuda.driver as cuda import pycuda.autoinit import tensorrt as trt import numpy as np # Load the serialized ONNX model with open('yolov3.onnx', 'rb') as f: engine_bytes = f.read() # Create a TensorRT engine trt_logger = trt.Logger(trt.Logger.WARNING) trt_engine = trt.Runtime(trt_logger).deserialize_cuda_engine(engine_bytes) # Allocate memory for the input and output buffers host_input = cuda.pagelocked_empty(trt.volume(trt_engine.get_binding_shape(0)), dtype=np.float32) host_output = cuda.pagelocked_empty(trt.volume(trt_engine.get_binding_shape(1)), dtype=np.float32) cuda.memcpy_htod_async(input_buffer, host_input, stream) cuda.memcpy_htod_async(output_buffer, host_output, stream) # Load the input data with open('input.bin', 'rb') as f: input_data = np.fromfile(f, dtype=np.float32) np.copyto(host_input, input_data) # Execute the inference context = trt_engine.create_execution_context() context.execute(batch_size=1, bindings=[int(input_buffer), int(output_buffer)]) cuda.memcpy_dtoh_async(host_output, output_buffer, stream) # Post-process the output with open('output.bin', 'wb') as f: host_output.tofile(f) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度物联网

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值