yolo和paddle模型常见输出参数解惑

文章讨论了针对不同深度学习模型的输出参数进行后处理的几种方式,包括针对预测目标数量的处理、85个数值的预测框结构、目标检测中topk目标的信息,以及PaddlePaddle框架下的动态维度管理和NMS操作。这些方法涉及图像识别、目标检测和批量推理过程中的关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据不同输出参数编写后处理,否则会报错

第一种

  • Concatoutput_dim_0 :变量,表示预测目标的数量,
  • 7:表示每个目标的七个参数:batch_id,x0,y0,x1,y1,cls_id,score

在这里插入图片描述

第二种

  • 85:每一行85个数值,5个center_x,center_y, width, height,score ,80个标签类别得分
  • 25200:三个尺度上的预测框总和 ( 80∗80∗3 + 40∗40∗3 + 20∗20∗3 ),每个网格三个预测框,后续需要非极大值抑制NMS处理
  • 1:没有批量预测推理,即每次输入推理一张图片

在这里插入图片描述

第三种

  • num_dets:表示其批次中每个图像中的目标数
  • det_boxes:表示 topk(100) 目标的坐标信息 [x0,y0,x1,y1] .
  • det_scores:表示每个 topk(100) 个对象的置信度分数
  • det_classes:表示每个 topk(100) 个对象的类别

在这里插入图片描述

第四种

在这里插入图片描述

第五种

在这里插入图片描述

第六种(paddlepaddle)

  • DynamicDimension :表示动态维度,一般是1
  • im_shape:图像经过resize后的大小,表示为H,W, DynamicDimension 表示batch维度
  • image:输入网络的图像,DynamicDimension 表示batch维度,如果输入图像大小为变长,则H,W为None
  • scale_factor:输入图像大小比真实图像大小,表示为scale_y, scale_x
  • multiclass_nms3_0.tmp_0:bbox, NMS的输出,形状为[N, 6], 其中N为预测框的个数,6为[class_id, score, x1, y1, x2, y2]
  • multiclass_nms3_0.tmp_2:bbox_num, 每张图片对应预测框的个数,例如batch_size为2,输出为[N1, N2], 表示第一张图包含N1个预测框,第二张图包含N2个预测框,并且预测框的总个数和NMS输出的第一维N相同
    在这里插入图片描述

yolo资料

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度物联网

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值