目录 摘要... 2 1.引言... 4 1.1 研究背景和意义... 4 1.2 国内外研究现状... 4 1.3 研究目的和内容... 5 2相关技术介绍... 5 2.1 大数据技术和应用领域... 5 2.2 机器学习算法及其在城市交通中的应用... 6 2.3 智慧城市交通系统及其构成要素... 6 3 数据来源和处理... 7 3.1 数据来源和获取方式... 7 3.2 数据清洗和预处理... 7 3.3 数据分析和特征提取... 8 4 城市交通流量预测模型... 8 4.1 建立预测模型的理论基础... 8 4.2 建立预测模型的方法和步骤... 8 5 城市交通流量优化方案... 9 5.1 交通信号优化... 9 5.2 路网优化... 9 5.3 公共交通优化... 9 5.4 车辆限行优化... 10 6 实验结果分析和讨论... 10 6.1 实验设置... 10 6.2 实验结果... 11 7 结论与展望... 11 7.1 主要研究成果... 11 7.2 研究价值和贡献... 12 7.3 不足之处和未来工作... 12 8 参考文献... 13 1.引言<