随着城市化进程的不断加速,交通流量成为城市管理和规划中的重要问题之一。本研究基于可视化技术,对交通流量进行深入分析与研究。该系统充分利用Python编程语言、MySQL数据库以及Hadoop、Spark、决策树等大数据技术,对海量交通流量信息数据进行高效处理和分析。系统采用可视化Web界面,首先通过爬虫技术抓取交通流量信息、分类等数据。由于数据量庞大,使用Pandas进行初步的数据处理和存储,然后通过Hadoop分布式文件系统将数据传输至MySQL数据库管理系统。核心的分布式计算部分利用了Spark的强大处理能力,进行特征工程和机器学习算法的训练。最终,通过Django和Vue.js框架将推荐结果呈现给用户。
该系统的研究意义在于,通过爬虫技术成功抓取了交通流量信息数据,经过清洗和特征工程处理后,采用协同过滤算法进行机器学习训练。这种交通流量预测方法不仅提高了交通流量预测的准确性和个性化程度,还为用户提供了更加便捷、高效的交通流量信息查看体验。此外,该系统的实现为大数据技术在交通流量预测领域的应用提供了有益的探索和实践经验。
系统功能分析
系统的功能主要包括三个方面。首先是需要从交通网站爬取到相应的数据,这些数据包括有交通流量信息分类信息,站点信息、预测信息等。其次是将这些数据通过hadoop的HDFS组件存储到服务器的mysql中,通过pyspark对数据进行分布式计算处理。最后通过django搭建的web