numpy——随机取样

numpy.random

  • numpy.random.seed()
    seed()用于指定随机数生成时所用算法开始的整数值
    seed()里的数字相当于设置了盛有随机数的“聚宝盆”,一个数字代表一个“聚宝盆”,当seed()的括号里设置相同的seed,“聚宝盆”就是一样的,那当然拿出的随机数就会是相同的。如果不设置seed,则每次生成不同的随机数。

离散型随机变量

二项分布(Binomial Distribution)
重复n次的伯努利试验,在每次实验中只有两种可能的结果,且事件之间相互独立。
二项分布概率函数的数学表示
P ( x = k ) = C n k p k ( 1 − p ) n − k P(x=k)={C^k_n}{p^k}{(1-p)^{n-k}} P(x=k)=Cnkpk(1p)nk
二项分布概率函数的代码表示

binom.pmf(k) = choose(n, k) p**k (1-p)**(n-k)

Note:

numpy.random.binomial(n, p, size=None)

表示对一个二项分布进行采样,size表示采样的次数,n表示n次伯努利试验,p代表成功的概率,函数返回值表示n中成功的次数。

举例:
模拟投硬币,投两次,请问两次都为正面的概率?

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

np.random.seed(20200605)
n = 2# 做某件事情的次数,这里是投两次硬币
p = 0.5#做某件事情成功的概率,在这里即投硬币为正面的概率
size = 50000
x = np.random.binomial(n, p, size)
'''或者使用binom.rvs
#使用binom.rvs(n, p, size=1)函数模拟一个二项随机变量,可视化地表现概率
y = stats.binom.rvs(n, p, size=size)#返回一个numpy.ndarray
'''
print(np.sum(x == 0) / size)  # 0.25154
print(np.sum(x == 1) / size)  # 0.49874
print(np.sum(x == 2) / size)  # 0.24972

plt.hist(x)
plt.xlabel('随机变量:硬币为正面次数')
plt.ylabel('50000个样本中出现的次数')
plt.show()
#它返回一个列表,列表中每个元素表示随机变量中对应值的概率
s = stats.binom.pmf(range(n + 1), n, p)
print(np.around(s, 3))

  • 泊松分布(Poisson Distribution)
    描述单位时间内随机事件发生的次数,满足一下条件:

1、在任意两个相等长度的区间上,事件发生的概率相等
2、事件在某一区间上是否发生与事件在其他区间上是否发生所独立

泊松分布概率函数的数学表示
P(x=k)= e − λ λ k k ! e^{-\lambda}{\lambda^k}\over{k!} k!eλλk
泊松分布概率函数的代码表示:

poisson.pmf(k)=exp(-lam)lam*k/k!

举例:
假定某航空公司预定票处平均每小时接到42次订购电话,那么十分钟内恰好街道6次电话的概率是多少?

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

#首先设置种子
np.random.seed(20201124)
#设置size, lam
size = 5000; lam = 42 / 6;
#np.random.poisson(lam, size), stats.poisson.rvs(lam, size=size)
x = np.random.poisson(lam, size);
print(np.sum(x == 6) / size)

plt.hist(x)
plt.xlabel('随机变量:每10分钟接到订票电话的次数')
plt.ylabel('5000个样本中出现的次数')
plt.show()

#使用poisson.pmf(k, mu)来求对应的腹部密度:概率密度函数(pmf)
x = stats.poisson.pmf(6, lam)
print(x)

  • 超几何分布
    1、各次实验不是独立的
    2、各次实验成功的概率也不是相等的
    超几何概率函数的数学表示:
    P(x=k)= C M k C N − M n − k C N n C{^k_M}C{^{n-k}_{N-M}}\over C{^n_N} CNnCMkCNMnk
numpy.random.hypergeometric(ngod,nbad,nsample,size=None)

表示对超几何分布进行采样,size表示采样的次数,ngod表示总体中具有成功标志的元素的个数,nbad表示总体中不具有成功标志的元素个数,ngod+nbad表示总样本容量,nsample表示抽取元素的次数,函数返回值表示抽取nsample个元素中具有成功标识的元素的个数。

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

np.random.seed(20200605)
size = 500000
x = np.random.hypergeometric(ngood=7, nbad=13, nsample=12, size=size)
'''或者
#用rvs(M, n, N, loc=0, size=1, random_state=None)模拟
x = stats.hypergeom.rvs(M=20,n=7,N=12,size=size)
'''
print(np.sum(x == 3) / size)  # 0.198664

plt.hist(x, bins=8)
plt.xlabel('狗的数量')
plt.ylabel('50000个样本中出现的次数')
plt.title('超几何分布',fontsize=20)
plt.show()

"""
M 为总体容量
n 为总体中具有成功标志的元素的个数
N,k 表示抽取N个元素有k个是成功元素
"""
x = range(8)
#用hypergeom.pmf(k, M, n, N, loc)来计算k次成功的概率
s = stats.hypergeom.pmf(k=x, M=20, n=7, N=12)
print(np.round(s, 3))
# [0.    0.004 0.048 0.199 0.358 0.286 0.095 0.01 ]

连续型随机变量

  • 均匀分布(Uniform Distribution)
    连续型随机变量X具有如下的概率密度函数,则称X服从[a,b]上的均匀分布
    f ( x ) f(x) f(x)= 1 b − a 1\over b-a ba1 a<x<b
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed(20200614)
a = 0
b = 100
size = 50000
x = np.random.uniform(a, b, size=size)
print(np.all(x >= 0))  # True
print(np.all(x < 100))  # True  #np.all(x < tmp) 当x中所有数据都小于tmp返回True,否则返回False
y = (np.sum(x < 50) - np.sum(x < 10)) / size
print(y)  # 0.40144

plt.hist(x, bins=20)
plt.show()

a = stats.uniform.cdf(10, 0, 100) #0-100 的均匀分布得到P(x <= 10)
b = stats.uniform.cdf(50, 0, 100) #0-100 的均匀分布得到P(x <= 50)
print(b - a)  # 0.4

np.random.uniform() 不指定low 和 high,默认在[0, 1)
np.random.randint() 则可以取随机的整数

  • 正态分布
    依据中心极限定理,当样本量足够大时,样本均值的分布会趋于正态分布。
    f ( x ) f(x) f(x)=exp( − ( x − μ ) 2 2 σ 2 -(x-\mu)^2\over{2\sigma^2} 2σ2(xμ)2) 1 2 π σ 1\over \sqrt{2\pi\sigma} 2πσ 1
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(20200614)
x = 0.5 * np.random.randn(2, 4) + 5
'''或者
#模拟10000个随机变量
x = 0.5*stats.norm.rvs(size=(2,4))+5
'''
print(x)
# [[5.39654234 5.4088702  5.49104652 4.95817289]
#  [4.31977933 4.76502391 4.70720327 4.36239023]]

np.random.seed(20200614)
mu = 5#平均值
sigma = 0.5#标准差
x = np.random.normal(mu, sigma, (2, 4))
print(x)
# [[5.39654234 5.4088702  5.49104652 4.95817289]
#  [4.31977933 4.76502391 4.70720327 4.36239023]]

size = 50000
x = np.random.normal(mu, sigma, size)

print(np.mean(x))  # 4.996403463175092
print(np.std(x, ddof=1))  # 0.4986846716715106(#样本标准差)
'''
ddof:int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
'''
plt.hist(x, bins=20)
plt.show()

总体标准差: σ = ∑ ( x i − x ‾ ) 2 n \sigma={\sqrt{\sum(x_i-\overline x)^2\over n}} σ=n(xix)2
样本标准差: S = ∑ ( x i − x ‾ ) 2 n − 1 S={\sqrt{\sum(x_i-\overline x)^2\over n-1}} S=n1(xix)2
标准误差: σ n = σ n \sigma_n={\sigma\over \sqrt n} σn=n σ
方差:标准差的平方

  • 指数分布(Exponential Distribution)

相比于泊松分布表示单位时间内随机事件的平均发生次数,指数分布可用来表示独立事件发生的时间间隔。
数学表示:
f ( x ) = λ e − λ x f(x)={\lambda e^{-\lambda x}} f(x)=λeλx x>0

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed(20200614)
lam = 7
size = 50000
x = np.random.exponential(1 / lam, size)
'''或者
#rvs(loc=0, scale=1/lam, size=size, random_state=None)模拟
'''
y1 = (np.sum(x < 1 / 7)) / size
y2 = (np.sum(x < 2 / 7)) / size
y3 = (np.sum(x < 3 / 7)) / size
print(y1)  # 0.63218
print(y2)  # 0.86518
print(y3)  # 0.95056

plt.hist(x, bins=20)
plt.show()

y1 = stats.expon.cdf(1 / 7, scale=1 / lam)  #Y, 期望
y2 = stats.expon.cdf(2 / 7, scale=1 / lam)
y3 = stats.expon.cdf(3 / 7, scale=1 / lam)
print(y1)  # 0.6321205588285577
print(y2)  # 0.8646647167633873
print(y3)  # 0.950212931632136

随机从序列中获取元素

umpy.random.choice(a, size=None, replace=True, p=None)

从序列中获取元素,若a为整数,元素取值从np.range(a)中随机获取;若a为数组,取值从a数组元素中随机获取。该函数还可以控制生成数组中的元素是否重复replace,以及选取元素的概率p。

import numpy as np
# 从[0,10)随机选三个,可重复
np.random.seed(20200614)
x = np.random.choice(10, 3)
print(x)  # [2 0 1]
#从[0, 10]选三个,概率如p所示,可重复
x = np.random.choice(10, 3, p=[0.05, 0, 0.05, 0.9, 0, 0, 0, 0, 0, 0])
print(x)  # [3 2 3]
#从[0,10)选三个,不可重复,概率如p
x = np.random.choice(10, 3, replace=False, p=[0.05, 0, 0.05, 0.9, 0, 0, 0, 0, 0, 0])
print(x)  # [3 0 2]

aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
x = np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
print(x) # ['pooh' 'rabbit' 'pooh' 'pooh' 'pooh']

np.random.seed(20200614)
x = np.random.randint(0, 10, 3) #均匀分布,从[0,10)选3个整数
print(x)  # [2 0 1]

对数据集进行洗牌操作

数据一般都是按照采集顺序排列的,但是在机器学习中很多算法都要求数据之间相互独立,所以需要先对数据集进行洗牌操作。

numpy.random.shuffle(x) 

对x进行重排序,如果x为多维数组,只沿第 0 轴洗牌,改变原来的数组,输出为None

import numpy as np

np.random.seed(20200614)
x = np.arange(10)
np.random.shuffle(x)
print(x)
# [6 8 7 5 3 9 1 4 0 2]

print(np.random.shuffle([1, 4, 9, 12, 15]))
# None

x = np.arange(20).reshape((5, 4))
print(x)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]
#  [12 13 14 15]
#  [16 17 18 19]]

np.random.shuffle(x)
print(x)
# [[ 4  5  6  7]
#  [ 0  1  2  3]
#  [ 8  9 10 11]
#  [16 17 18 19]
#  [12 13 14 15]]

练习题

  • 创建一个形为5×3的二维数组,以包含5到10之间的随机数。
    知识点:创建随机二维数组
import numpy as np

x = np.random.randint(5, 11, (5, 3))
print(x)
'''
[[ 8  7  8]
 [ 7  7  9]
 [ 9  7  9]
 [ 9 10  7]
 [ 5 10  9]]
 '''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值