numpy.random
- numpy.random.seed()
seed()用于指定随机数生成时所用算法开始的整数值
seed()里的数字相当于设置了盛有随机数的“聚宝盆”,一个数字代表一个“聚宝盆”,当seed()的括号里设置相同的seed,“聚宝盆”就是一样的,那当然拿出的随机数就会是相同的。如果不设置seed,则每次生成不同的随机数。
离散型随机变量
二项分布(Binomial Distribution)
重复n次的伯努利试验,在每次实验中只有两种可能的结果,且事件之间相互独立。
二项分布概率函数的数学表示
P
(
x
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
P(x=k)={C^k_n}{p^k}{(1-p)^{n-k}}
P(x=k)=Cnkpk(1−p)n−k
二项分布概率函数的代码表示
binom.pmf(k) = choose(n, k) p**k (1-p)**(n-k)
Note:
numpy.random.binomial(n, p, size=None)
表示对一个二项分布进行采样,size表示采样的次数,n表示n次伯努利试验,p代表成功的概率,函数返回值表示n中成功的次数。
举例:
模拟投硬币,投两次,请问两次都为正面的概率?
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
np.random.seed(20200605)
n = 2# 做某件事情的次数,这里是投两次硬币
p = 0.5#做某件事情成功的概率,在这里即投硬币为正面的概率
size = 50000
x = np.random.binomial(n, p, size)
'''或者使用binom.rvs
#使用binom.rvs(n, p, size=1)函数模拟一个二项随机变量,可视化地表现概率
y = stats.binom.rvs(n, p, size=size)#返回一个numpy.ndarray
'''
print(np.sum(x == 0) / size) # 0.25154
print(np.sum(x == 1) / size) # 0.49874
print(np.sum(x == 2) / size) # 0.24972
plt.hist(x)
plt.xlabel('随机变量:硬币为正面次数')
plt.ylabel('50000个样本中出现的次数')
plt.show()
#它返回一个列表,列表中每个元素表示随机变量中对应值的概率
s = stats.binom.pmf(range(n + 1), n, p)
print(np.around(s, 3))
- 泊松分布(Poisson Distribution)
描述单位时间内随机事件发生的次数,满足一下条件:
1、在任意两个相等长度的区间上,事件发生的概率相等
2、事件在某一区间上是否发生与事件在其他区间上是否发生所独立
泊松分布概率函数的数学表示
P(x=k)=
e
−
λ
λ
k
k
!
e^{-\lambda}{\lambda^k}\over{k!}
k!e−λλk
泊松分布概率函数的代码表示:
poisson.pmf(k)=exp(-lam)lam*k/k!
举例:
假定某航空公司预定票处平均每小时接到42次订购电话,那么十分钟内恰好街道6次电话的概率是多少?
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
#首先设置种子
np.random.seed(20201124)
#设置size, lam
size = 5000; lam = 42 / 6;
#np.random.poisson(lam, size), stats.poisson.rvs(lam, size=size)
x = np.random.poisson(lam, size);
print(np.sum(x == 6) / size)
plt.hist(x)
plt.xlabel('随机变量:每10分钟接到订票电话的次数')
plt.ylabel('5000个样本中出现的次数')
plt.show()
#使用poisson.pmf(k, mu)来求对应的腹部密度:概率密度函数(pmf)
x = stats.poisson.pmf(6, lam)
print(x)
- 超几何分布
1、各次实验不是独立的
2、各次实验成功的概率也不是相等的
超几何概率函数的数学表示:
P(x=k)= C M k C N − M n − k C N n C{^k_M}C{^{n-k}_{N-M}}\over C{^n_N} CNnCMkCN−Mn−k
numpy.random.hypergeometric(ngod,nbad,nsample,size=None)
表示对超几何分布进行采样,size表示采样的次数,ngod表示总体中具有成功标志的元素的个数,nbad表示总体中不具有成功标志的元素个数,ngod+nbad表示总样本容量,nsample表示抽取元素的次数,函数返回值表示抽取nsample个元素中具有成功标识的元素的个数。
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
np.random.seed(20200605)
size = 500000
x = np.random.hypergeometric(ngood=7, nbad=13, nsample=12, size=size)
'''或者
#用rvs(M, n, N, loc=0, size=1, random_state=None)模拟
x = stats.hypergeom.rvs(M=20,n=7,N=12,size=size)
'''
print(np.sum(x == 3) / size) # 0.198664
plt.hist(x, bins=8)
plt.xlabel('狗的数量')
plt.ylabel('50000个样本中出现的次数')
plt.title('超几何分布',fontsize=20)
plt.show()
"""
M 为总体容量
n 为总体中具有成功标志的元素的个数
N,k 表示抽取N个元素有k个是成功元素
"""
x = range(8)
#用hypergeom.pmf(k, M, n, N, loc)来计算k次成功的概率
s = stats.hypergeom.pmf(k=x, M=20, n=7, N=12)
print(np.round(s, 3))
# [0. 0.004 0.048 0.199 0.358 0.286 0.095 0.01 ]
连续型随机变量
- 均匀分布(Uniform Distribution)
连续型随机变量X具有如下的概率密度函数,则称X服从[a,b]上的均匀分布
f ( x ) f(x) f(x)= 1 b − a 1\over b-a b−a1 a<x<b
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
np.random.seed(20200614)
a = 0
b = 100
size = 50000
x = np.random.uniform(a, b, size=size)
print(np.all(x >= 0)) # True
print(np.all(x < 100)) # True #np.all(x < tmp) 当x中所有数据都小于tmp返回True,否则返回False
y = (np.sum(x < 50) - np.sum(x < 10)) / size
print(y) # 0.40144
plt.hist(x, bins=20)
plt.show()
a = stats.uniform.cdf(10, 0, 100) #0-100 的均匀分布得到P(x <= 10)
b = stats.uniform.cdf(50, 0, 100) #0-100 的均匀分布得到P(x <= 50)
print(b - a) # 0.4
np.random.uniform() 不指定low 和 high,默认在[0, 1)
np.random.randint() 则可以取随机的整数
- 正态分布
依据中心极限定理,当样本量足够大时,样本均值的分布会趋于正态分布。
f ( x ) f(x) f(x)=exp( − ( x − μ ) 2 2 σ 2 -(x-\mu)^2\over{2\sigma^2} 2σ2−(x−μ)2) 1 2 π σ 1\over \sqrt{2\pi\sigma} 2πσ1
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(20200614)
x = 0.5 * np.random.randn(2, 4) + 5
'''或者
#模拟10000个随机变量
x = 0.5*stats.norm.rvs(size=(2,4))+5
'''
print(x)
# [[5.39654234 5.4088702 5.49104652 4.95817289]
# [4.31977933 4.76502391 4.70720327 4.36239023]]
np.random.seed(20200614)
mu = 5#平均值
sigma = 0.5#标准差
x = np.random.normal(mu, sigma, (2, 4))
print(x)
# [[5.39654234 5.4088702 5.49104652 4.95817289]
# [4.31977933 4.76502391 4.70720327 4.36239023]]
size = 50000
x = np.random.normal(mu, sigma, size)
print(np.mean(x)) # 4.996403463175092
print(np.std(x, ddof=1)) # 0.4986846716715106(#样本标准差)
'''
ddof:int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
'''
plt.hist(x, bins=20)
plt.show()
总体标准差:
σ
=
∑
(
x
i
−
x
‾
)
2
n
\sigma={\sqrt{\sum(x_i-\overline x)^2\over n}}
σ=n∑(xi−x)2
样本标准差:
S
=
∑
(
x
i
−
x
‾
)
2
n
−
1
S={\sqrt{\sum(x_i-\overline x)^2\over n-1}}
S=n−1∑(xi−x)2
标准误差:
σ
n
=
σ
n
\sigma_n={\sigma\over \sqrt n}
σn=nσ
方差:标准差的平方
- 指数分布(Exponential Distribution)
相比于泊松分布表示单位时间内随机事件的平均发生次数,指数分布可用来表示独立事件发生的时间间隔。
数学表示:
f
(
x
)
=
λ
e
−
λ
x
f(x)={\lambda e^{-\lambda x}}
f(x)=λe−λx x>0
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
np.random.seed(20200614)
lam = 7
size = 50000
x = np.random.exponential(1 / lam, size)
'''或者
#rvs(loc=0, scale=1/lam, size=size, random_state=None)模拟
'''
y1 = (np.sum(x < 1 / 7)) / size
y2 = (np.sum(x < 2 / 7)) / size
y3 = (np.sum(x < 3 / 7)) / size
print(y1) # 0.63218
print(y2) # 0.86518
print(y3) # 0.95056
plt.hist(x, bins=20)
plt.show()
y1 = stats.expon.cdf(1 / 7, scale=1 / lam) #Y, 期望
y2 = stats.expon.cdf(2 / 7, scale=1 / lam)
y3 = stats.expon.cdf(3 / 7, scale=1 / lam)
print(y1) # 0.6321205588285577
print(y2) # 0.8646647167633873
print(y3) # 0.950212931632136
随机从序列中获取元素
umpy.random.choice(a, size=None, replace=True, p=None)
从序列中获取元素,若a为整数,元素取值从np.range(a)中随机获取;若a为数组,取值从a数组元素中随机获取。该函数还可以控制生成数组中的元素是否重复replace,以及选取元素的概率p。
import numpy as np
# 从[0,10)随机选三个,可重复
np.random.seed(20200614)
x = np.random.choice(10, 3)
print(x) # [2 0 1]
#从[0, 10]选三个,概率如p所示,可重复
x = np.random.choice(10, 3, p=[0.05, 0, 0.05, 0.9, 0, 0, 0, 0, 0, 0])
print(x) # [3 2 3]
#从[0,10)选三个,不可重复,概率如p
x = np.random.choice(10, 3, replace=False, p=[0.05, 0, 0.05, 0.9, 0, 0, 0, 0, 0, 0])
print(x) # [3 0 2]
aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
x = np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
print(x) # ['pooh' 'rabbit' 'pooh' 'pooh' 'pooh']
np.random.seed(20200614)
x = np.random.randint(0, 10, 3) #均匀分布,从[0,10)选3个整数
print(x) # [2 0 1]
对数据集进行洗牌操作
数据一般都是按照采集顺序排列的,但是在机器学习中很多算法都要求数据之间相互独立,所以需要先对数据集进行洗牌操作。
numpy.random.shuffle(x)
对x进行重排序,如果x为多维数组,只沿第 0 轴洗牌,改变原来的数组,输出为None
import numpy as np
np.random.seed(20200614)
x = np.arange(10)
np.random.shuffle(x)
print(x)
# [6 8 7 5 3 9 1 4 0 2]
print(np.random.shuffle([1, 4, 9, 12, 15]))
# None
x = np.arange(20).reshape((5, 4))
print(x)
# [[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]
# [12 13 14 15]
# [16 17 18 19]]
np.random.shuffle(x)
print(x)
# [[ 4 5 6 7]
# [ 0 1 2 3]
# [ 8 9 10 11]
# [16 17 18 19]
# [12 13 14 15]]
练习题
- 创建一个形为5×3的二维数组,以包含5到10之间的随机数。
知识点:创建随机二维数组
import numpy as np
x = np.random.randint(5, 11, (5, 3))
print(x)
'''
[[ 8 7 8]
[ 7 7 9]
[ 9 7 9]
[ 9 10 7]
[ 5 10 9]]
'''