神经网络超参数优化:随机搜索完整实现指南

神经网络超参数优化:随机搜索完整实现指南

0. 前言

我们已经通过函数逼近问题学习了深度学习 ( Deep learning, DL) 模型手动超参数优化 (Hyperparameter Optimization, HPO) 的方法,并使用不同的超参数生成比较结果。我们已经知道了,手动超参数优化极其耗时。目前,有许多工具可以自动执行 HPO,我们可以使用这些工具与进化计算 (Evolutionary Computation, EC) 方法的基准比较,但是为了深入了解它们背后的原理,我们将详细介绍自动搜索过程。

1. 随机搜索

随机搜索超参数优化 (Hyperparameter Optimization, HPO) ,是从给定范围内的已知超参数集中随机取样值,然后评估有效性的过程。随机搜索的目标是最终找到最佳或所需的解决方案。这个过程类似于有人戴上眼罩扔飞镖,希望能命中靶心。戴眼罩的人可能不会在几次投掷中命中靶心,但是在多次投掷中,也可能会命中靶心。

2. 将随机搜索应用于超参数优化

在本节中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值