一、主要内容
厂区设施布局优化问题属于多目标复合问题,一直以来都是工业工程界的研究热点。目前,由Muther 提出的系统化设施布置(SLP)方法是设施布局求解方法中最著名、应用范围最广的方法,该方法逻辑严密,系统性强,运用起来简单快捷,实用性强。但也存在一些不足之处,优化效果会受到设计人员的主观经验和知识水平的限制。在SLP方法的应用步骤中,要将定量的数据转化为定性的等级划分来表示各个设施间的相互关系,并且在绘制位置相关图及设施布置方案图时,需要进行大量的人为调整和修改,以适应现实制约条件。所以,该种方法得到结果存在一定局限性。此外,如果需要布置的设施数目较大,SLP 方法的应用将会变得非常复杂和烦琐,导致无法达成布局优化的目的。因此,运用 SLP 法进行初步布局规划,然后对该规划方案进行优化的方法正逐步得到运用。
对于设施布局问题含有非线性特点并可归类于NP 完全问题。在对设施布局建立数学模型后,在求解时选用传统的确定性求解算法容易产出“组合爆炸”这一现象,即需要布局的设施数量达到较高数量水平时,求解中的计算量通常伴随设施数量的增长呈现指数增长,难以解出答案或需耗费大量时间[5]。在当前,一些工程问题研究中常见的几种智能优化算法(如粒子群算法、禁忌搜索算法、遗传算法等)能够轻松应对复杂的优化问题,快速地寻找到最优解,表现出良好的求解性能。厂区设施布局问题也是此类优化问题之一,使用智能优化算法求解效率较高,优化效果良好。
粒子群(PSO)算法是智能优化算法极具潜力的分支之一,近年来学者对其关注度极高,该算法在设施布局问题的求解应用方面具有一定的理论基础。将系统设施布置(SLP)方法与粒子群(PSO)算法结合,通过实践应用验证这一方法的可行性,可以为大型厂区物流运作和设施规划提供理论依据。
二、核心思路与仿真
通过对公司Ⅰ期厂区进行实地走访,记录与总结厂区设施布局相关数据。主要包括:产品产量、作业单位划分、工艺流程、生产周期、物流强度、人员管理等原始资料。通过实地调研挖掘该企业现行设施布局方案存在的实际问题以寻求解决方法。
基于 SLP 方法对 公司Ⅰ期厂区设施布局进行分析时,运用定性分析的方法划分厂区内部作业单位,采用定量分析的方法对各个作业单位进行物流关系和非物流关系的评估,定性和定量分析的结合,使本文的研究方法更贴合实际状况,为后续方案的进一步优化打下基础。
在相关理论的支撑下,建立数学模型进行求解及结果分析。构建厂区内物流总强度最小、非物流密切程度最大的双目标函数,根据实际约束条件设置惩罚函数。通过粒子群算法对双目标函数进行求解,并对比求解结果,选出最优布局方案。
仿真: