✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 深度强化学习在主动配电网运行优化中的理论基础与模型构建
随着可再生能源在配电网中的渗透率不断提升,主动配电网在解决能源消纳和不确定性调控中的作用愈发重要。深度强化学习(Deep Reinforcement Learning, DRL)作为一种数据驱动的优化手段,在主动配电网运行优化中展现出了显著优势。本文结合随机规划、自适应动态规划和深度强化学习三个领域的理论,深入阐述了深度强化学习求解多阶段随机规划问题的基本原理。相比传统的两阶段随机规划,多阶段随机规划能够更好地应对可再生能源发电的出力不确定性。本文将深度强化学习算法分为值迭代与策略迭代两大类,分别阐述其在主动配电网运行优化中的应用及其无模型的实现原理。在此基础上,本文提出了基于深度强化学习的主动配电网运行优化模型,利用量测和通信技术逐步获取的配电网状态信息来实时优化决策,充分挖掘现有可调控资源的灵活调节潜力。
(2) 基于多阶段随机规划的日前优化模型与改进算法
本文提出了主动配电网日前有功无功协调优化的多阶段随机规划模型,并结合改进的值迭代算法进行求解。该模型将可再生能源的实际出力和负荷变化过程建模为场景树,通过对储能装置和分组投切电容器组的多组备选策略的设置,使日前运行计划能够自适应于可再生能源和负荷的功率波动情况进行动态调整。为提高算法的可靠性与安全性,本文在解耦系统模型和不确定量实现过程的基础上,利用数据驱动的主动配电网潮流模型实现深度强化学习算法中的探索与试错过程。此外,本文还提出了一种改进的值迭代算法,通过引入阶段性并行时差参数更新和目标策略平滑正则化等方法,提升了算法的稳定性和运行效率,同时实现了对连续与离散变量的联合优化处理。该模型与算法的结合使得主动配电网在面对不确定的负荷和发电情况时,能够更加灵活、高效地进行日前优化,降低运行成本的同时提高运行的经济性与可靠性。
(3) 两时间尺度的多阶段规划与策略迭代算法
为解决主动配电网运行中面临的实时不确定性和复杂性,本文提出了一种两时间尺度的多阶段随机规划模型,并利用改进的策略迭代算法进行求解。该模型考虑了上级电网为主动配电网提供功率调节裕度的成本,通过条件风险价值(Conditional Value-at-Risk, CVaR)定义系统运行风险,并以此为基础对系统运行的风险和经济性进行优化。相比于传统的场景优化法,该模型的储能装置功率可调裕度并非通过日前给定,而是通过多阶段随机规划模拟储能装置的运行状态,进而实现储能装置功率调节裕度在不同时间段间的灵活转移。本文提出了一种改进的近端策略优化(Proximal Policy Optimization, PPO)算法,通过将两时间尺度的多阶段规划重构为约束马尔可夫决策过程,并引入拉格朗日函数松弛条件风险价值约束,提升了求解的有效性和稳定性。此外,为了实现对条件风险价值约束的处理,本文还引入了参数更新步长的限制方法,使得算法在优化过程中表现出更高的收敛性和鲁棒性。
(4) 主动配电网实时优化与多智能体深度强化学习算法
为提高主动配电网的实时优化能力,本文提出了实时有功无功协调优化模型,并结合改进的多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning, MADRL)算法进行分布式求解。本文的实时优化模型通过追踪日前计划中的储能存储电量变化,最小化储能存储电量偏差,使得储能系统能够灵活应对实时的功率波动。多智能体深度强化学习算法采用集中训练、分散执行的架构,通过无模型的方式实现主动配电网实时优化的分布式求解。在控制器间进行完全异步的训练和执行,有效避免了执行过程中可能受到的通信干扰。与传统的强化学习算法相比,本文提出的算法无需对值分解和共享参数做出强假设,从而提升了算法在处理复杂系统运行约束时的灵活性和鲁棒性。实验结果表明,本文所提出的实时优化模型及其分布式求解方法在实际应用中展现出了较高的适应性和有效性,能够在确保系统稳定运行的前提下提高可再生能源的消纳能力。
import numpy as np
import tensorflow as tf
from collections import deque
import random
# DQN模型参数
gamma = 0.99 # 折扣因子
learning_rate = 0.001
batch_size = 64
epsilon = 1.0 # 探索率
epsilon_decay = 0.995
epsilon_min = 0.01
# 构建DQN网络
def build_dqn(input_dim, output_dim):
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_dim=input_dim),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(output_dim, activation='linear')
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss='mse')
return model
# 经验回放缓冲区
memory = deque(maxlen=2000)
# 动作选择函数
def select_action(state, model, epsilon, action_size):
if np.random.rand() <= epsilon:
return random.randrange(action_size)
q_values = model.predict(state)
return np.argmax(q_values[0])
# 训练DQN模型
def train_dqn(model, target_model, memory, batch_size):
minibatch = random.sample(memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target += gamma * np.amax(target_model.predict(next_state)[0])
target_f = model.predict(state)
target_f[0][action] = target
model.fit(state, target_f, epochs=1, verbose=0)