深度学习算法医学图像分割毕业论文【matlab】

一、核心思路

卷积神经网络(CNN)作为最具代表性的神经网络之一,通过引入卷积层降低训练参数,在图像处理与分析领域取得了众多的突破性进展。但是,基于 CNN的输入是以像素块为前提,相对于整个图像要小很多,无法从图像整体考虑,这就限制了像素级分类的性能,直接影响分割结果。 

整合海马灰质概率图的级联深度学习框架改善海马分割。考虑到海马作为脑灰质结构,其包含海马的脑灰质图像能够作为先验知识和特征对改进海马分割存在潜在贡献,开发了一种具有整合海马灰质概率图的鲁棒性的级联深度学习框架改进海马分割,进一步提升海马分割精度。 
基于级联 LLDNet 和综合评估的婴幼儿至青春期腿长差异自动测量。由于LLD 是一种常见的骨科问题,人群中 90%的人至少有 1mm 的 LLD,并且已有研究在小队列实验中证明了深度学习能够自动测量 X 光片中的 LLD。因此,本章在先前研究的基础上,希望为 LLD 自动测量开发一个统一的解决方案,利用深度学习算法对一个涵盖从婴儿到青少年的所有阶段和多种疾病状况的影像学数据集进行LLD 的自动测量和综合评估。 

二、过程与仿真

海马体是大脑皮层下重要的灰质结构,在情景记忆和认知功能中尤为重要。海马体结构的形态学改变与多种神经性精神疾病或状况有关,包括阿尔茨海默病(AD)、精神分裂症[、抑郁症等,其中准确的海马分割是进行临床诊断和研究的重要前提。尽管经典的基于多图谱的分割(Multi-atlas based image segmentation,MAIS)方法和基于深度学习的方法都取得了很有前景的海马分割性能,但由于海马在AD 分析中的重要意义,仍需进一步的研究。然而,如何进一步提高海马分割的准确性仍是一项具有挑战性的任务。

采用的 U 型网络架构。(a)整体的网络结构示意图;(b)AtteBlock 的结构示意图,两个输入𝐹𝑢和𝐹𝑟分别表示解码器模块的上采样块和编码器模块的ResBlock 生成的特征图,Λ 表示权值矩阵;(c)添加DropBlock 的ResBlock 的结构示意图。 

提出的HGM-cNet 在大多数指标上都比 MAIS 方法和深度学习方法取得了更好的分割结果(在9 个指标上进行 Bonferroni 校正后,p<0.05/9)。 

博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值