基于FPGA含分散式风电配电系统控制【附设计】

✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


一、电力系统数字孪生分析与技术路线

“电力系统数字孪生”是指在电力系统中构建一个与实际系统高度一致的数字化模型,实时反映实际系统的运行状态和动态特性。这一模型不仅包括电力系统的物理结构和运行特性,还融合了电磁暂态仿真,能够对系统的动态行为进行精确预测和控制。

电力系统数字孪生与电磁暂态仿真之间存在紧密联系。电磁暂态仿真主要用于分析电力系统中快速变化的电磁现象,如短路、切换等事件对系统的影响。数字孪生通过将这些仿真结果实时应用于实际系统中,实现对系统的动态监控和优化控制。

为了实现含分散式双馈感应发电机(DFIG)的配电系统数字孪生,本文提出了一种基于FPGA的技术路线。FPGA具有高并行计算能力和实时处理优势,适用于电力系统中复杂的计算任务。通过在FPGA中实现电磁暂态仿真,可以实现对含DFIG配电系统的数字孪生,为电力系统的实时监控和控制提供支持。

二、电力系统无源节点导纳矩阵求逆

在电力系统分析中,无源节点导纳矩阵(Y矩阵)的求逆是一个关键步骤,用于计算系统的电气参数和状态。传统的方法在处理大规模电网时计算量大,实时性差。为了提高计算效率,本文提出了一种面向电力系统无源节点导纳矩阵的堆叠求逆法,并在FPGA上实现了这一算法。

1. 堆叠求逆法

堆叠求逆法是一种对矩阵求逆的优化方法,通过分块处理和堆叠计算,将大规模矩阵分解为多个小矩阵,降低计算复杂度。具体过程包括:

  • 矩阵分块:将大规模的Y矩阵分解为多个较小的子矩阵,以减少单次运算量。
  • 堆叠计算:逐步求解子矩阵的逆矩阵,并将结果堆叠起来,得到整体矩阵的逆矩阵。

通过这一方法,可以显著降低矩阵求逆的计算复杂度,提高计算效率。

2. FPGA实现

为了在FPGA中实现堆叠求逆法,设计了电网与DFIG的通用底层算法模块。该模块包括:

  • 矩阵分块模块:将输入的Y矩阵进行分块,分配到FPGA的多个逻辑单元中进行并行处理。
  • 并行计算模块:利用FPGA的并行计算能力,同时计算多个子矩阵的逆矩阵。
  • 结果堆叠模块:将计算得到的子矩阵逆矩阵进行堆叠,得到整体的逆矩阵。

在Vivado仿真环境中对该算法模块进行了测试,结果表明,FPGA在进行矩阵求逆计算时具有明显的加速能力,能够满足电力系统实时仿真的要求。

三、DFIG的虚拟电容等效法与IP数字镜像

在分散式风电系统中,双馈感应发电机(DFIG)是主要的发电单元。为了提高DFIG在数字孪生中的模拟精度,提出了一种面向异步机定转子“T型”等效电路解耦的虚拟电容等效法,并基于此构建了DFIG的IP数字镜像。

1. 虚拟电容等效法

虚拟电容等效法是一种将DFIG的定子和转子电路进行解耦的方法。通过在DFIG的T型等效电路中引入虚拟电容,建立定子和转子之间的等效关系,实现两者的解耦。

  • 等效模型构建:在DFIG的定转子模型中引入虚拟电容,建立定转子之间的耦合关系,形成一个新的等效电路模型。
  • 解耦计算:根据等效模型,对定子和转子的电压、电流进行解耦计算,提高仿真效率。
2. DFIG-IP数字镜像

基于虚拟电容等效法,提出了DFIG的并行算法,构建了DFIG-IP数字镜像:

  • IP核设计:利用Verilog HDL在FPGA上实现DFIG的数字镜像,设计了定子电路、转子电路和控制算法模块。
  • 并行计算:利用FPGA的并行计算能力,将DFIG内部的各组件(如功率电子器件、电机模型)并行化,提升仿真速度。

将DFIG-IP数字镜像的模拟结果与Simulink仿真结果进行对比,结果显示,两者在输出电压、电流等参数上具有较高的一致性,验证了数字镜像的模拟精度。

四、风电并网系统的异常辨识与数字孪生

为了实现对风电并网系统的异常监测和辨识,提出了一种面向风电并网系统的异常辨识注意力机制(Attention Mechanism,AM)算法框架,构建基于机理驱动与数据驱动融合的风电并网系统数字孪生。

1. 注意力机制算法框架

注意力机制是一种能够自动关注数据中特征信息的重要部分的算法,有助于提高系统对异常的辨识能力。本文将其应用于风电并网系统的数字孪生中:

  • 特征提取:通过神经网络对风电系统的电压、电流、功率等参数进行特征提取。
  • 注意力权重分配:根据提取到的特征信息,计算各特征的注意力权重,突出异常特征,抑制无关特征。
  • 异常辨识:利用注意力机制对风电系统的运行状态进行实时分析,识别系统中的异常事件,如电压跌落、频率偏差等。
2. 数字镜像感知时延常数

为了评价数字镜像感官的异常辨识性能,提出了数字镜像感知时延常数(Sensing Delay Constant of Digital Image,SDC-DI)指标,用于衡量系统对异常事件的响应速度。SDC-DI越小,表示系统对异常的感知越敏锐,响应速度越快。

3. 实验验证

在16机DFIG接入的配电系统场景下,对注意力机制算法进行了验证。实验结果表明,基于注意力机制的异常辨识算法在实时性和准确性上均有显著优势,能够快速识别并网系统中的异常事件,为数字孪生的实际应用提供了有效支持。

module dfig_model (
    input wire clk,
    input wire rst_n,
    input wire [15:0] v_stator,   // 定子电压输入
    input wire [15:0] v_rotor,    // 转子电压输入
    output reg [15:0] i_stator,   // 定子电流输出
    output reg [15:0] i_rotor     // 转子电流输出
);
    // 定义定子和转子参数
    parameter R_s = 16'h0028;     // 定子电阻
    parameter L_s = 16'h0010;     // 定子电感
    parameter R_r = 16'h0020;     // 转子电阻
    parameter L_r = 16'h0018;     // 转子电感
    parameter C_eq = 16'h0004;    // 虚拟电容等效值

    // 中间变量
    reg [15:0] v_s_eq;
    reg [15:0] v_r_eq;

    // 定子电流计算
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            i_stator <= 16'd0;
        end else begin
            // 计算等效电压
            v_s_eq <= v_stator - (i_stator * R_s + (i_stator * L_s) / C_eq);
            // 定子电流计算
            i_stator <= (v_s_eq - v_rotor) / (R_s + L_s);
        end
    end

    // 转子电流计算
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            i_rotor <= 16'd0;
        end else begin
            // 计算等效电压
            v_r_eq <= v_rotor - (i_rotor * R_r + (i_rotor * L_r) / C_eq);
            // 转子电流计算
            i_rotor <= (v_r_eq - v_stator) / (R_r + L_r);
        end
    end
endmodule

具体模块设计:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值