基于物联网的智慧农业大棚控制系统【附设计】

✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


构建一个智能化的农业大棚控制系统,通过物联网技术实现对大棚环境的实时监测与控制,以提高作物产量和质量。该系统的设计包括信息采集节点、数据传输节点、执行设备控制节点以及远程监控节点,利用LoRa无线通信技术实现节点间的数据传输,确保信息的高效、稳定传递。

2. 系统架构设计

2.1 信息采集节点

信息采集节点是系统的重要组成部分,负责实时监测大棚内的环境参数。主要包括以下几个方面:

  • 传感器选型:系统选用多种传感器,包括温湿度传感器、光照传感器、土壤湿度传感器和CO2浓度传感器。这些传感器能够全面反映大棚的环境状况,确保数据的准确性。
  • 数据采集:通过STM32F103C8T6微控制器对传感器数据进行采集,采用ADC接口读取模拟信号并转换为数字信号。系统设置定时采集,以保证环境数据的实时更新。
2.2 数据传输节点

数据传输节点负责将采集到的数据进行处理并传输到控制中心。设计思路如下:

  • LoRa无线通信:选择LoRa模块作为数据传输的主要手段,具有远距离、低功耗的特点,适合农业大棚这种相对封闭的环境。通过LoRa网络,将各个信息采集节点的数据汇总至中心节点。
  • 网络拓扑结构:采用星形拓扑结构,中心节点与各信息采集节点之间的通信简洁高效。中心节点接收所有数据后进行初步处理,并通过Wi-Fi或GPRS模块上传至云服务器。
2.3 执行设备控制节点

执行设备控制节点负责根据监测到的环境数据,自动或手动控制大棚内的设备,确保作物在最佳生长条件下生长。控制的设备包括:

  • 卷帘机:根据光照强度和温度数据,自动调节卷帘的高度,以避免温度过高或光照过强。
  • 风机和水泵:根据温湿度和土壤湿度的实时数据,自动启停风机和水泵,以维持适宜的环境条件。

3. 硬件设计

3.1 整体架构

硬件设计包括系统中各节点的主控制器、传感器、LoRa模块、Wi-Fi模块和GPRS模块的选型与电路设计。具体内容如下:

  • 主控制器:选择STM32F103C8T6作为主控制器,具有处理速度快、存储容量大、功能丰富的优势,适合本系统的需要。
  • 外围电路设计:通过Altium Designer软件设计最小系统电路,确保电源稳定和信号完整。同时完成PCB的绘制与焊接,保证系统的可靠性与稳定性。
  • 控制箱设计:设计并制作控制箱,能够安全地控制380V电机设备,确保大棚内的各项设备能够安全高效地运行。

4. 软件设计

4.1 程序开发

在软件开发方面,利用Keil5软件对各节点的STM32单片机程序进行设计与编写,重点包括以下几个方面:

  • 数据采集程序:编写数据采集程序,实现对各类传感器数据的采集和处理,保证数据的准确性和实时性。
  • LoRa通信协议:对LoRa组网方式和数据传输方式进行优化,确保数据的快速传输和有效接收。
  • 智能决策程序:开发智能决策程序,根据采集到的环境数据,自动控制执行设备,确保作物生长在适宜的环境条件下。
4.2 Web信息管理系统

系统还设计了基于B/S架构的Web信息管理系统,实现了大棚的实时监测与管理功能。具体设计如下:

  • 前端开发:使用Vue.js、ElementUI和Echarts技术构建用户界面,界面简洁直观,方便用户操作。
  • 后端开发:采用SpringBoot和Mybatis-Plus框架进行后端开发,处理数据请求和响应,确保系统高效运行。
  • 功能模块:系统支持实时监测大棚内环境信息、查询历史记录和管理设备,用户可手动控制执行设备或开启自动控制模式,实现科学管理。

5. 系统测试与验证

在系统搭建完成后,进行全面的测试与验证,以确保系统的功能和性能满足实际需求。

5.1 功能测试

对系统各个功能模块进行逐项测试,包括数据采集的准确性、执行设备的控制精度等。测试结果表明,各项功能均能够正常运行,满足设计要求。

5.2 性能测试

通过模拟不同环境条件,测试系统在极端气候下的表现。系统能够稳定运行,传感器数据采集与传输实时性良好。

5.3 稳定性测试

将系统长期运行在实际大棚环境中,观察其对环境变化的响应能力。经过一个月的测试,系统表现出良好的稳定性,能够持续监测环境参数并有效控制设备。

#include "stm32f10x.h"
#include "sensor.h"
#include "loRa.h"
#include "actuator.h"

void setup() {
    // 初始化系统时钟
    SystemInit();
    // 初始化传感器
    Sensor_Init();
    // 初始化LoRa通信
    LoRa_Init();
    // 初始化执行设备
    Actuator_Init();
}

void loop() {
    // 采集传感器数据
    SensorData data = Sensor_Read();
    // 数据处理与决策
    if (data.temperature > 30) {
        Actuator_Control("fan", ON); // 启动风机
    } else {
        Actuator_Control("fan", OFF); // 关闭风机
    }
    // 通过LoRa发送数据
    LoRa_Send(data);
    // 等待一段时间
    Delay(1000);
}

int main() {
    setup();
    while (1) {
        loop();
    }
}

### 构建智慧农业大棚管理系统的模型 #### 设计目标 为了满足现代农业发展的需求,智慧农业大棚控制系统旨在利用多种先进技术手段提升农业生产效率和质量。该系统不仅实现了对温室内部环境条件的精确调控,还支持远程管理和自动化操作,从而减少了人工干预的需求。 #### 系统架构概述 整个智慧农业大棚管理系统由四大部分组成:信息采集节点、数据传输节点、执行设备控制节点以及远程监控节点[^3]。这些组件共同协作来完成从传感器读取到最终决策反馈的过程。 - **信息采集节点** 负责收集有关温度、湿度、光照强度等各种物理量的数据,并将其转换成电信号发送给下一个环节处理。 - **数据传输节点** 利用LoRa无线通信协议确保信号可以在较大范围内可靠地传播至中央处理器或其他指定位置,即使在网络覆盖不佳的情况下也能保持连接畅通无阻。 - **执行设备控制节点** 接收来自上层指令后负责启动或停止相应硬件设施的工作流程,比如水泵开关、风扇转速调节等动作均在此处得到落实。 - **远程监控节点** 提供了一个直观易懂的人机交互界面让用户可以随时随地查看当前状态并作出适当调整建议;同时具备报警功能,在异常情况发生时及时通知相关人员采取措施加以应对。 #### 建模过程详解 在具体实施过程中,会先搭建起一个初步框架用于验证概念可行性,随后逐步完善细节直至形成完整的解决方案: 1. 定义业务逻辑关系图,明确各子模块间相互作用的方式; 2. 根据实际应用场景选定合适的传感元件种类及其布局方案; 3. 编写程序代码实现数据解析算法并对获取的信息进行预处理; ```python def parse_sensor_data(raw_bytes): """ 解析原始字节流中的传感器数值 """ parsed_values = [] while raw_bytes: value, length = struct.unpack('!If', raw_bytes[:8]) parsed_values.append(value) raw_bytes = raw_bytes[length:] return parsed_values ``` 4. 配置网络参数优化通讯链路性能指标,保障实时性要求得以满足; 5. 测试原型样机的功能完整性与可靠性,记录各项测试结果作为后续改进依据[^4]。 通过上述步骤建立起一套完善的智慧农业大棚管理体系,不仅可以帮助农户更好地掌握作物生长状况,还能显著降低劳动成本投入,进而促进整个行业的可持续健康发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值