基于物联网的智慧农业大棚控制系统【附设计】

✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


构建一个智能化的农业大棚控制系统,通过物联网技术实现对大棚环境的实时监测与控制,以提高作物产量和质量。该系统的设计包括信息采集节点、数据传输节点、执行设备控制节点以及远程监控节点,利用LoRa无线通信技术实现节点间的数据传输,确保信息的高效、稳定传递。

2. 系统架构设计

2.1 信息采集节点

信息采集节点是系统的重要组成部分,负责实时监测大棚内的环境参数。主要包括以下几个方面:

  • 传感器选型:系统选用多种传感器,包括温湿度传感器、光照传感器、土壤湿度传感器和CO2浓度传感器。这些传感器能够全面反映大棚的环境状况,确保数据的准确性。
  • 数据采集:通过STM32F103C8T6微控制器对传感器数据进行采集,采用ADC接口读取模拟信号并转换为数字信号。系统设置定时采集,以保证环境数据的实时更新。
2.2 数据传输节点

数据传输节点负责将采集到的数据进行处理并传输到控制中心。设计思路如下:

  • LoRa无线通信:选择LoRa模块作为数据传输的主要手段,具有远距离、低功耗的特点,适合农业大棚这种相对封闭的环境。通过LoRa网络,将各个信息采集节点的数据汇总至中心节点。
  • 网络拓扑结构:采用星形拓扑结构,中心节点与各信息采集节点之间的通信简洁高效。中心节点接收所有数据后进行初步处理,并通过Wi-Fi或GPRS模块上传至云服务器。
2.3 执行设备控制节点

执行设备控制节点负责根据监测到的环境数据,自动或手动控制大棚内的设备,确保作物在最佳生长条件下生长。控制的设备包括:

  • 卷帘机:根据光照强度和温度数据,自动调节卷帘的高度,以避免温度过高或光照过强。
  • 风机和水泵:根据温湿度和土壤湿度的实时数据,自动启停风机和水泵,以维持适宜的环境条件。

3. 硬件设计

3.1 整体架构

硬件设计包括系统中各节点的主控制器、传感器、LoRa模块、Wi-Fi模块和GPRS模块的选型与电路设计。具体内容如下:

  • 主控制器:选择STM32F103C8T6作为主控制器,具有处理速度快、存储容量大、功能丰富的优势,适合本系统的需要。
  • 外围电路设计:通过Altium Designer软件设计最小系统电路,确保电源稳定和信号完整。同时完成PCB的绘制与焊接,保证系统的可靠性与稳定性。
  • 控制箱设计:设计并制作控制箱,能够安全地控制380V电机设备,确保大棚内的各项设备能够安全高效地运行。

4. 软件设计

4.1 程序开发

在软件开发方面,利用Keil5软件对各节点的STM32单片机程序进行设计与编写,重点包括以下几个方面:

  • 数据采集程序:编写数据采集程序,实现对各类传感器数据的采集和处理,保证数据的准确性和实时性。
  • LoRa通信协议:对LoRa组网方式和数据传输方式进行优化,确保数据的快速传输和有效接收。
  • 智能决策程序:开发智能决策程序,根据采集到的环境数据,自动控制执行设备,确保作物生长在适宜的环境条件下。
4.2 Web信息管理系统

系统还设计了基于B/S架构的Web信息管理系统,实现了大棚的实时监测与管理功能。具体设计如下:

  • 前端开发:使用Vue.js、ElementUI和Echarts技术构建用户界面,界面简洁直观,方便用户操作。
  • 后端开发:采用SpringBoot和Mybatis-Plus框架进行后端开发,处理数据请求和响应,确保系统高效运行。
  • 功能模块:系统支持实时监测大棚内环境信息、查询历史记录和管理设备,用户可手动控制执行设备或开启自动控制模式,实现科学管理。

5. 系统测试与验证

在系统搭建完成后,进行全面的测试与验证,以确保系统的功能和性能满足实际需求。

5.1 功能测试

对系统各个功能模块进行逐项测试,包括数据采集的准确性、执行设备的控制精度等。测试结果表明,各项功能均能够正常运行,满足设计要求。

5.2 性能测试

通过模拟不同环境条件,测试系统在极端气候下的表现。系统能够稳定运行,传感器数据采集与传输实时性良好。

5.3 稳定性测试

将系统长期运行在实际大棚环境中,观察其对环境变化的响应能力。经过一个月的测试,系统表现出良好的稳定性,能够持续监测环境参数并有效控制设备。

#include "stm32f10x.h"
#include "sensor.h"
#include "loRa.h"
#include "actuator.h"

void setup() {
    // 初始化系统时钟
    SystemInit();
    // 初始化传感器
    Sensor_Init();
    // 初始化LoRa通信
    LoRa_Init();
    // 初始化执行设备
    Actuator_Init();
}

void loop() {
    // 采集传感器数据
    SensorData data = Sensor_Read();
    // 数据处理与决策
    if (data.temperature > 30) {
        Actuator_Control("fan", ON); // 启动风机
    } else {
        Actuator_Control("fan", OFF); // 关闭风机
    }
    // 通过LoRa发送数据
    LoRa_Send(data);
    // 等待一段时间
    Delay(1000);
}

int main() {
    setup();
    while (1) {
        loop();
    }
}

智能农业大棚设计系统通常是一个结合物联网(IoT)技术、大数据分析和人工智能的应用,用于自动化温室环境控制和作物管理。它可能会包括以下几个部分的代码: 1. **数据采集**:通过传感器收集温度、湿度、光照强度、土壤湿度等环境参数以及植物生长状态的数据,这部分可能涉及到硬件接口程序,如使用Python的GPIO库连接硬件。 ```python import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) sensor_pins = [4, 17, 27] # 示例:BCM模式下的GPIO引脚 ``` 2. **实时监测**:读取并处理这些传感器数据,可能使用Python的pandas库来进行数据处理。 ```python import pandas as pd data = pd.read_csv('sensor_data.csv') current_conditions = data.iloc[-1] ``` 3. **数据分析和决策支持**:利用机器学习算法分析历史数据,预测最佳种植条件,并根据预设策略调整灌溉、施肥、通风等参数。 ```python from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) next_action = model.predict(current_conditions) ``` 4. **远程监控与控制**:通过互联网将数据发送到云端服务器,用户可以远程查看和管理大棚环境。 ```python import requests response = requests.post('http://api.smartagriculture.com/control', data=next_action) ``` 5. **自动执行控制系统**:基于收到的指令,可能涉及电机驱动、阀门开关等设备的控制代码。 ```python def control_device(action): if action == 'irrigate': irrigation_system.run() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值