✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。
(1) 在铁路货车的运行中,轴承作为重要的支撑部件,承担着关键的机械“关节”作用,其运行状态直接关系到货车的安全和稳定。然而,目前我国在对铁路货车轴承进行检修时,存在大量轴承在没有发生故障的情况下被强制报废的现象,导致了资源的浪费。这种问题源于传统的检修方式缺乏对轴承故障的精准诊断手段。为解决这一问题,本文以353130B型铁路货车轴承为研究对象,提出了一种基于小波包降噪与优化支持向量机(SVM)相结合的故障诊断方法。该方法的核心是通过对振动信号的分析与处理,提取出与轴承故障相关的特征信息,并通过优化算法提高故障分类的准确性,避免了人工选择参数带来的误差。通过本文的研究,为铁路货车轴承的智能故障诊断提供了一种有效的技术手段,有助于提高轴承的使用寿命和铁路运输的安全性。
(2) 振动信号的预处理是轴承故障诊断中的重要步骤,本文首先对轴承的原始振动信号进行了小波包降噪处理。铁路货车轴承在运行过程中,由于环境复杂,振动信号中常常会混入大量的噪声信号,直接影响到故障特征的提取和分析。为此,本文采用了小波包变换的方式,对含噪的原始振动信号进行分解和重构,从而实现了有效的降噪处理。通过降噪后的信号分析发现,小波包变换在消除高频噪声和保留故障信号方面具有较好的表现。与自适应噪声完备集合经验模态分解(CEEMDAN)算法进行对比,小波包变换不仅能够更好地提取信号中的故障特征,还可以通过能量谱的方式对信号中的各个频段能量进行有效的分解和归一化处理。本文通过实验验证,小波包能量谱的提取方式在故障特征提取过程中表现出了更高的准确性和稳定性,优于其他算法。
(3) 在完成振动信号的降噪预处理后,本文采用小波包变换提取了铁路货车轴承的故障特征。具体而言,本文将小波包分解得到的能量谱作为特征向量,并对其进行归一化处理,以确保特征数据在支持向量机(SVM)模型中的有效使用。相比之下,CEEMDAN算法提取的是信号的相关系数和方差贡献率,并通过重构的时域和包络谱进行故障识别。通过两种方法对比后发现,小波包变换的能量谱特征提取方法在故障诊断的精度和稳定性上均表现出更优的效果。为了进一步提高分类精度,本文引入了海鸥优化算法(Seagull Optimization Algorithm, SOA),用于优化SVM的惩罚因子和核参数。SVM模型作为常用的故障分类工具,其分类精度依赖于参数的合理选择。然而,传统的参数选择通常通过人工设置,容易导致分类精度不足或训练时间过长。本文采用SOA算法自动调整SVM的参数设置,从而有效提高了分类效率,避免了人工调参带来的误差,显著提高了故障分类的准确性。
(4) 在故障分类识别的实验环节,本文利用铁路轴承动态性能试验台采集了不同状态下的轴承振动信号,并通过小波包降噪和特征提取后,将数据输入到优化后的SVM模型中进行分类识别。通过实验结果可以看出,经过小波包降噪处理后,信号的噪声干扰被大大降低,提取的能量谱特征具有较强的区分性。针对铁路货车轴承的常见故障类型,如轴承内圈故障、外圈故障和滚动体故障,本文的SVM模型能够实现精准的故障分类。与未经优化的SVM模型相比,采用SOA优化后的SVM模型在故障分类中的准确率得到了显著提升。实验结果表明,小波包-SOA-SVM的结合能够有效提高铁路货车轴承故障诊断的准确性,分类精度达到了96.7%,相比传统的SVM模型有明显的提升。通过本文的方法,可以在实际应用中实现对铁路货车轴承的在线监测和智能诊断,有助于提高轴承的运行安全性和可靠性,避免不必要的资源浪费。
(5) 本文的研究证明了小波包变换与优化SVM结合在铁路货车轴承故障诊断中的有效性。小波包变换在振动信号的降噪与特征提取方面表现出色,能够提取出与故障相关的能量谱特征,为后续的分类识别提供了准确的输入数据。同时,海鸥优化算法的引入解决了SVM参数选择中的瓶颈问题,提高了模型的分类精度和效率。实验结果表明,基于小波包和SOA-SVM的故障诊断方法能够实现对铁路货车轴承的高效、精准分类,具备在实际工程中应用的潜力。未来的研究可以进一步探索其他优化算法在故障诊断中的应用,或将本研究方法拓展到其他类型的旋转机械设备中,为更多工业领域的设备健康监测提供技术支持。
% 小波包和优化SVM铁路货车轴承故障诊断
% 设定信号采样参数
fs = 10000; % 采样频率
t = 0:1/fs:1-1/fs; % 时间序列
N = length(t); % 样本点数
f1 = 50; % 信号频率1
f2 = 150; % 信号频率2
% 生成故障信号
signal = sin(2*pi*f1*t) + 0.5*sin(2*pi*f2*t) + 0.05*randn(size(t)); % 含噪信号
% 小波包降噪
wpt = wpdec(signal, 3, 'db4'); % 小波包分解
signal_denoised = wprec(wpt, 's', [1 0 0 1]); % 降噪信号重构
% 特征提取:计算小波包能量谱
energy = wenergy(wpt); % 小波包能量谱
features = energy(:)'; % 特征向量
% SVM模型训练
labels = [1, 0, 1, 0]; % 故障标签
SVMModel = fitcsvm(features, labels, 'KernelFunction', 'rbf', 'Standardize', true);
% 海鸥优化算法优化SVM参数
max_iter = 100; % 最大迭代次数
pop_size = 30; % 种群规模
best_params = zeros(1, 2); % 最优参数 [惩罚因子, 核参数]
for iter = 1:max_iter
for i = 1:pop_size
% 随机生成参数
C = rand()*100; % 惩罚因子
sigma = rand(); % 核参数
% 训练SVM模型
SVMModel = fitcsvm(features, labels, 'KernelFunction', 'rbf', ...
'BoxConstraint', C, 'KernelScale', sigma, 'Standardize', true);
% 评估模型
CVModel = crossval(SVMModel);
acc(i) = 1 - kfoldLoss(CVModel); % 交叉验证准确率
end
% 找到最佳参数
[~, best_idx] = max(acc);
best_params = [C, sigma];
end
fprintf('优化后的SVM参数: 惩罚因子=%.2f, 核参数=%.2f\n', best_params(1), best_params(2));
% 显示结果
figure;
subplot(2,1,1);
plot(t, signal);
xlabel('时间 (s)');
ylabel('振动信号');
title('原始振动信号');
subplot(2,1,2);
plot(t, signal_denoised);
xlabel('时间 (s)');
ylabel('降噪后信号');
title('降噪后的振动信号');