EEMD-ICA与优化SVM的轴承故障诊断毕业论文【附代码+数据】

✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。


(1)铁路货车轴承振动信号降噪处理

EEMD - ICA 降噪方法原理

利用 EEMD - ICA 降噪方法对轴承振动信号进行预处理。EEMD(集合经验模态分解)是一种自适应的信号分解方法,它能够将复杂的信号分解为一系列具有不同频率特征的固有模态函数(IMF)分量。通过将信号进行 EEMD 分解,可以更好地揭示信号的内在特征和时频特性。ICA(独立分量分析)则是一种盲源分离技术,其目的是从混合信号中分离出相互独立的源信号。在本研究中,将 EEMD 分解得到的 IMF 分量根据互相关法则进行筛选,构建虚拟噪声通道,然后将其输入到固定点算法(Fast ICA)盲源分离通道中,实现信噪分离,从而降低噪声对信号特征的影响。

降噪方法实施步骤

首先,将采集到的轴承振动信号数据输入到 EEMD 算法中进行分解,得到多个 IMF 分量。然后,根据互相关法则对这些 IMF 分量进行筛选,选择与原始信号相关性较高的分量构建虚拟噪声通道。接下来,将构建的虚拟噪声通道输入到 Fast ICA 算法中进行盲源分离,实现噪声成分的滤除。通过这种方式,可以有效地去除信号中的噪声,提高信号的质量和可靠性。

降噪效果验证

以试验仿真数据为媒介,验证 EEMD - ICA 降噪方法的有效性。通过对含有不同噪声水平的仿真信号进行处理,比较降噪前后信号的特征和质量。例如,可以观察信号的时域波形、频域频谱以及相关的统计指标等。如果降噪后的信号在时域上更加平滑,频域上噪声成分明显减少,相关统计指标得到改善,说明该降噪方法能够有效地去除噪声,保留信号的有用特征,为后续的故障诊断提供更好的基础。

(2)基于 EEMD 的特征提取与 SVM 故障分类

EEMD 特征提取

将经降噪处理后分离出的干净信号再次进行 EEMD 分解,得到另一组 IMF 分量。根据该组分量各自的互相关系数,筛选出含原信号特征信息多的分量。这些分量包含了轴承运行状态的重要信息,对于故障诊断具有关键作用。然后,对筛选出的 IMF 分量进行能量熵值的特征提取,构成特征向量。能量熵值能够反映信号能量在不同频率成分上的分布情况,对于描述信号的复杂性和不确定性具有重要意义。通过计算 IMF 分量的能量熵值,可以将信号的特征以一种量化的方式表示出来,为后续的故障分类提供有效的特征输入。

SVM 故障分类及 NGO 优化

选用支持向量机(SVM)对铁路货车轴承进行故障分类。SVM 是一种基于统计学习理论的机器学习方法,它在小样本、非线性分类问题上具有良好的性能和泛化能力。然而,SVM 的性能在很大程度上依赖于核参数和惩罚因子的选择。为了找到最优的参数组合,采用最新提出的北方苍鹰优化算法(NGO)针对 SVM 模型的参数优化问题进行求解。NGO 算法是一种基于自然界中苍鹰捕食行为的智能优化算法,它具有搜索能力强、收敛速度快等优点。通过 NGO 算法在参数空间中进行搜索,寻找使 SVM 分类性能最优的核参数及惩罚因子的最优值。以凯斯西储大学的数据进行滚动轴承十类工况(即三种轴承故障状态各包含三种故障尺寸以及一组正常工况)故障诊断实验。在实验中,将提取的特征向量输入到 SVM 模型中进行训练和分类,并通过不断调整 NGO 算法的参数和迭代过程,优化 SVM 的性能。最终实验结果表明,NGO 优化算法确实能够提高 SVM 故障分类的性能,验证了该方法在滚动轴承故障诊断领域的可行性和有效性。

(3)EEMD - ICA - NGO - SVM 诊断模型构建与应用

诊断流程系统模型构建

通过计算机构建 EEMD - ICA - NGO - SVM 诊断流程系统模型。该模型将前面所述的信号降噪、特征提取和故障分类等步骤有机地结合起来,形成一个完整的故障诊断流程。在模型构建过程中,需要合理设计各个模块之间的接口和数据传输方式,确保整个系统能够高效、准确地运行。例如,要确定 EEMD 分解和 ICA 降噪过程中参数的选择和调整方法,以及如何将提取的特征向量有效地输入到 SVM 分类器中进行训练和预测。同时,还需要考虑模型的可扩展性和兼容性,以便能够方便地应用于不同类型和规格的铁路货车轴承故障诊断。

实际数据验证与效果分析

使用铁路轴承动态性能试验台采集到的铁路货车轴承六种不同类别运转条件下的实际数据验证系统的有效性和准确率。这些实际数据涵盖了轴承在不同转速、频率以及不同故障类型和程度下的运行情况,能够更真实地反映系统在实际应用中的性能。通过将实际数据输入到构建的诊断模型中,观察模型的输出结果,即对轴承故障类型和状态的判断是否准确。对诊断结果进行详细的分析和评估,包括计算准确率、召回率、F1 值等评价指标,以及对不同类型故障的诊断效果进行比较。经试验验证,EEMD - ICA - NGO - SVM 故障诊断方案不仅针对铁路货车轴承的故障诊断表现出很好的分类效果,而且能够适用于轴承在多种转速、频率运行条件下的故障诊断,具有很广泛的适用性。这说明该方案能够有效地应对实际生产中复杂多变的工况,为铁路货车轴承的故障诊断提供了一种可靠、高效的方法,有助于提高铁路运输的安全性和可靠性,降低维修成本和时间。

% 准备数据
data = load('bearing_data.mat');
X = data.feature_vector; % 特征向量
y = data.labels; % 标签(故障类别)

% 划分训练集和测试集
train_ratio = 0.7; % 训练集比例
n_samples = size(X, 1);
n_train = round(train_ratio * n_samples);
idx = randperm(n_samples);
X_train = X(idx(1:n_train), :);
y_train = y(idx(1:n_train));
X_test = X(idx(n_train + 1:end), :);
y_test = y(idx(n_train + 1:end));

% 初始化SVM模型
svm_model = svmtrain(y_train, X_train, '-s 0 -t 2'); % 线性核函数(可根据需要调整)

% 预测
y_pred = svmpredict(y_test, X_test, svm_model);

% 计算准确率等指标
accuracy = sum(y_pred == y_test) / length(y_test);
disp(['准确率: ', num2str(accuracy)]);

% NGO优化SVM参数(示例框架,需要进一步完善)
function fitness = ngo_objective_function(params)
    % params为核参数和惩罚因子等参数组合
    svm_model = svmtrain(y_train, X_train, ['-s 0 -t 2 -c ', num2str(params(1)),' -g ', num2str(params(2))]);
    y_pred = svmpredict(y_test, X_test, svm_model);
    accuracy = sum(y_pred == y_test) / length(y_test);
    fitness = -accuracy; % NGO算法通常是最大化目标,这里取准确率的相反数作为适应度函数
end

% NGO算法参数设置
ngo_params = struct('population_size', 50, 'max_iterations', 100,...);

% 运行NGO算法进行参数优化
[best_params, best_fitness] = ngo_algorithm(ngo_objective_function, ngo_params);

% 使用优化后的参数重新训练SVM模型并测试
svm_model_optimized = svmtrain(y_train, X_train, ['-s 0 -t 2 -c ', num2str(best_params(1)),' -g ', num2str(best_params(2))]);
y_pred_optimized = svmpredict(y_test, X_test, svm_model_optimized);
accuracy_optimized = sum(y_pred_optimized == y_test) / length(y_test);
disp(['优化后准确率: ', num2str(accuracy_optimized)]);

% NGO算法实现(简单示例,需要进一步完善实际的算法代码)
function [best_params, best_fitness] = ngo_algorithm(objective_function, params)
    % 初始化种群
    population = initialize_population(params.population_size, length(best_params));
    fitness_values = zeros(params.population_size, 1);
    for i = 1:params.population_size
        fitness_values(i) = objective_function(population(i, :));
    end
    
    % 迭代优化
    for iter = 1:params.max_iterations
        % 更新种群位置等操作(根据NGO算法原理进行具体实现)
        %...
        
        % 计算新的适应度值
        for i = 1:params.population_size
            fitness_values(i) = objective_function(population(i, :));
        end
        
        % 更新最优解
        [best_fitness, best_index] = min(fitness_values);
        best_params = population(best_index, :);
    end
    
    return best_params, best_fitness;
end

function population = initialize_population(size, dimension)
    % 随机初始化种群
    population = rand(size, dimension);
    return population;
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值