超材料加载天线设计应用毕业论文【附代码+数据】

✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。


(1)超材料结构与加载位置优化方法及三陷波超宽带天线设计

优化方法比较与选择

探讨了三种不同的方法对超材料结构和加载位置进行优化,即传统扫频优化法、单目标遗传算法(GA)以及多目标进化算法(MOEA/D)。传统扫频优化法是一种较为基础的方法,通过逐步改变参数进行扫描,以寻找较为合适的结构和位置,但这种方法往往效率较低且可能无法找到全局最优解。单目标遗传算法则是基于生物遗传进化原理的智能算法,它通过模拟自然选择和遗传变异等过程来搜索最优解,但在处理多目标优化问题时可能存在局限性。多目标进化算法(MOEA/D)则能够同时处理多个目标的优化问题,在超材料结构和加载位置的优化中具有明显优势。它可以在一次运行中得到多个非劣解,为设计者提供更多的选择,并且能够更好地平衡不同目标之间的关系,提高设计效率和质量。

高性能三陷波超宽带天线设计

基于 MOEA/D 算法设计了一款高性能三陷波超宽带天线。该天线的陷波频带设计在 3.31 - 3.69GHz、5.25 - 6.13GHz 和 8.01 - 8.51GHz。通过合理设计超材料的结构和加载位置,利用 MOEA/D 算法进行优化,使得天线在陷波频带内具有良好的性能表现。与传统扫频优化和单目标 GA 算法优化的设计方法相比,采用 MOEA/D 算法设计的天线在陷波频带内增益低至 -19dB,这表明在陷波频段内能够有效地抑制信号传输,减少干扰。各陷波频带准确度误差均在 3.6% 以下,显示出较高的频率准确性。同时,MOEA/D 算法的使用提高了天线的设计效率,减少了设计周期和成本。经实验测试,天线成功实现了三个陷波频段,且与仿真结果吻合良好,陷波频带准确度误差均在 5% 以下,进一步验证了设计的有效性和准确性。

(2)非对称 ELC 超材料结构及 5G 四频天线设计

非对称 ELC 超材料特性分析与谐振机理研究

提出了非对称 ELC 超材料结构,并对其进行了深入的电磁特性分析和等效电路分析。通过电磁特性分析,了解该超材料在不同频率下的电场、磁场分布以及电磁响应特性,为其应用于天线设计提供基础数据。等效电路分析则是将超材料的电磁特性等效为电路模型,通过推导相关公式,深入研究超材料结构的谐振机理。这种分析方法有助于理解超材料的工作原理,为后续的设计和优化提供理论指导。例如,通过等效电路分析可以确定超材料的谐振频率与结构参数之间的关系,从而能够根据设计需求灵活调整结构,实现特定的电磁性能。

5G 四频天线设计与优化

采用刻蚀螺线型超材料和加载非对称 ELC 超材料的方法,通过多目标连续域修补算法,设计出工作频带为 n1(1.73 - 2.17GHz)、n41(2.51 - 2.79GHz)、3.5G(3.45 - 3.54GHz)和 4.9G(4.86 - 4.94GHz)的 5G 四频天线。在设计过程中,充分利用超材料的独特电磁特性来调整天线的辐射性能和频率响应。多目标连续域修补算法能够在满足多个目标要求的同时,对超材料的结构和加载位置进行优化,使得天线的工作频带与目标频带之间的误差在 5% 以内,最小达到 0.14%。这表明设计的天线能够很好地覆盖 5G 通信所需的频段,并且具有较高的频率精度。经实验测试,天线具有 4 个工作频段,与仿真结果吻合良好,与目标频带之间的误差在 7.2% 以内,验证了设计的可行性和可靠性,为 5G 通信天线的设计提供了一种有效的解决方案。

(3)基于分布式加载的 5G 高隔离度 MIMO 天线设计

MIMO 天线小型化与隔离度提升设计思路

提出了一种基于分布式加载的 5G 高隔离度 MIMO 天线设计方案。为实现 MIMO 天线的小型化设计,在天线单元贴片上加载 BC - SRR 环。通过合理设计 BC - SRR 环的结构和参数,利用其电磁特性来减小天线的尺寸,使得天线整体尺寸为 50mm×44mm×1.6mm,满足了 5G 设备对天线小型化的要求。同时,为提高天线的隔离度,采用在天线单元间水平加载分布式 SRR 环的方式。分布式 SRR 环能够在一定程度上抑制天线单元之间的耦合,从而提高隔离度。通过 HFSS 与 GA 算法联合仿真,对分布式 SRR 环的结构和加载位置进行优化。HFSS 软件用于精确模拟天线的电磁性能,而 GA 算法则在优化过程中搜索最佳的结构和位置参数,两者结合能够有效地提高设计效率和精度。

高隔离度 MIMO 天线性能实现与测试验证

最终实现了工作频段为 4.84 - 5.00GHz 的高隔离度 MIMO 天线。在谐振点处,隔离度达到 42.88dB,通带内隔离度最大提高了 28.15dB,ECC 相关系数均小于 0.0042。这些指标表明该天线具有良好的隔离性能和较低的相关性,能够有效地减少天线单元之间的干扰,提高通信质量。经实验测试,天线隔离度达到 40.41dB,与仿真结果吻合良好,成功实现了提高隔离度的目标。这为 5G 通信中 MIMO 天线的设计提供了一种新的方法和思路,有助于提高 5G 通信系统的性能和可靠性。

% 定义目标函数(最大化天线的增益并满足一定的频率和隔离度要求)
function fitness = antenna_objective_function(x)
    % x为天线参数向量(例如超材料结构尺寸、加载位置等)
    % 调用天线仿真软件(这里假设可以通过函数模拟)或根据已有的模型计算天线性能指标
    gain = calculate_antenna_gain(x);
    frequency = calculate_antenna_frequency(x);
    isolation = calculate_antenna_isolation(x);
    
    % 定义目标频率和隔离度要求
    target_frequency = [4.84, 5.00]; % 工作频段
    target_isolation = 40; % 目标隔离度(dB)
    
    % 计算适应度值
    frequency_error = sum(abs(frequency - target_frequency));
    isolation_error = abs(isolation - target_isolation);
    
    fitness = gain - frequency_error - isolation_error;
end

% 遗传算法参数设置
population_size = 50; % 种群大小
num_generations = 100; % 迭代次数
mutation_rate = 0.1; % 变异率
crossover_rate = 0.8; % 交叉率

% 定义参数范围
lower_bound = [lower_bound_1, lower_bound_2,...]; % 下界
upper_bound = [upper_bound_1, upper_bound_2,...]; % 上界

% 初始化种群
population = rand(population_size, length(lower_bound)) * (upper_bound - lower_bound) + lower_bound;

% 遗传算法迭代过程
for generation = 1:num_generations
    % 计算适应度值
    fitness_values = zeros(population_size, 1);
    for i = 1:population_size
        fitness_values(i) = antenna_objective_function(population(i, :));
    end
    
    % 选择操作
    selected_indices = RouletteWheelSelection(fitness_values, population_size);
    selected_population = population(selected_indices, :);
    
    % 交叉操作
    for i = 1:2:population_size
        if rand < crossover_rate
            parent1 = selected_population(i, :);
            parent2 = selected_population(i + 1, :);
            [child1, child2] = Crossover(parent1, parent2);
            selected_population(i, :) = child1;
            selected_population(i + 1, :) = child2;
        end
    end
    
    % 变异操作
    for i = 1:population_size
        if rand < mutation_rate
            mutated_individual = Mutate(selected_population(i, :), lower_bound, upper_bound);
            selected_population(i, :) = mutated_individual;
        end
    end
    
    % 更新种群
    population = selected_population;
end

% 输出最优解
[best_fitness, best_index] = max(fitness_values);
best_parameters = population(best_index, :);
disp(['最优参数: ', num2str(best_parameters)]);
disp(['最优适应度值(最大增益等指标综合): ', num2str(best_fitness)]);

% 轮盘赌选择函数
function selected_indices = RouletteWheelSelection(fitness_values, num_selections)
    total_fitness = sum(fitness_values);
    probabilities = fitness_values / total_fitness;
    cumulative_probabilities = cumsum(probabilities);
    selected_indices = zeros(num_selections, 1);
    
    for i = 1:num_selections
        r = rand;
        selected_indices(i) = find(r <= cumulative_probabilities, 1);
    end
end

% 交叉函数
function [child1, child2] = Crossover(parent1, parent2)
    crossover_point = randi(length(parent1));
    child1 = [parent1(1:crossover_point), parent2(crossover_point + 1:end)];
    child2 = [parent2(1:crossover_point), parent1(crossover_point + 1:end)];
end

% 变异函数
function mutated_individual = Mutate(individual, lower_bound, upper_bound)
    mutation_index = randi(length(individual));
    mutation_amount = (rand - 0.5) * (upper_bound(mutation_index) - lower_bound(mutation_index));
    mutated_individual = individual;
    mutated_individual(mutation_index) = min(max(individual(mutation_index) + mutation_amount, lower_bound(mutation_index)), upper_bound(mutation_index));
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值