✅ 博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)列车晚点原因分析与运行图优化 研究首先分析了造成列车晚点的主要原因,包括天气变化、设备故障、人为操作失误等,并针对列车晚点的表现形式对不同的晚点现象进行分类。接着,研究详细阐述了列车运行图的铺画过程,以及运行图中冗余时间的配置原则与方法。研究还探讨了冗余时间对列车晚点的消解作用,分析了冗余时间对不同晚点状态的影响,为后续的优化模型提供了理论基础。
(2)列车晚点预测模型的建立 考虑到旅客和铁路系统对列车晚点问题的不同侧重与需求,研究提出了基于支持向量机(SVM)的分类预测和回归预测模型。通过对列车运行数据进行描述性统计与处理,提取了模型的输入参数特征。为了提高模型的预测精度,研究采用了粒子群优化(PSO)算法对SVM模型中的参数进行优化调整。这一过程不仅提高了模型的预测准确性,还为铁路车务系统提供了有效的决策支持。
(3)列车运行干扰因素的数学描述与冗余时间优化 研究对列车运行中导致列车晚点的干扰因素进行了数学描述,并提出了通过高斯分布对列车运行的干扰分布进行拟合的方法。在考虑区间内存在无干扰概率的条件下,高斯分布拟合结果优于传统指数分布拟合结果。基于列车实绩运行数据的扰动分布拟合结果,研究建立了冗余时间布局优化模型,并通过遗传算法进行求解。这一模型以列车在各个区间运行的准点率最大为优化目标,在保持列车原有始发和终到时刻的条件下,实现了冗余时间的优化布局。
% trainData: 列车运行特征的数据集
% labels: 列车晚点情况的标签
% 使用SVM进行列车晚点预测
SVMModel = fitcsvm(trainData, labels, 'KernelFunction', 'rbf', 'BoxConstraint', 1);
% 预测列车晚点情况
predictions = predict(SVMModel, trainData);
% 计算预测准确率
accuracy = sum(predictions == labels) / numel(labels);
disp(['预测准确率: ', num2str(accuracy * 100), '%']);
% 可视化预测结果
figure;
gscatter(trainData(:,1), trainData(:,2), labels);
hold on;
gscatter(trainData(:,1), trainData(:,2), predictions);
legend('实际晚点', '预测晚点');
title('列车晚点预测结果');
hold off;