列车晚点预测与冗余时间优化毕业论文【附代码+数据】

博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)列车晚点原因分析与运行图优化 研究首先分析了造成列车晚点的主要原因,包括天气变化、设备故障、人为操作失误等,并针对列车晚点的表现形式对不同的晚点现象进行分类。接着,研究详细阐述了列车运行图的铺画过程,以及运行图中冗余时间的配置原则与方法。研究还探讨了冗余时间对列车晚点的消解作用,分析了冗余时间对不同晚点状态的影响,为后续的优化模型提供了理论基础。

(2)列车晚点预测模型的建立 考虑到旅客和铁路系统对列车晚点问题的不同侧重与需求,研究提出了基于支持向量机(SVM)的分类预测和回归预测模型。通过对列车运行数据进行描述性统计与处理,提取了模型的输入参数特征。为了提高模型的预测精度,研究采用了粒子群优化(PSO)算法对SVM模型中的参数进行优化调整。这一过程不仅提高了模型的预测准确性,还为铁路车务系统提供了有效的决策支持。

(3)列车运行干扰因素的数学描述与冗余时间优化 研究对列车运行中导致列车晚点的干扰因素进行了数学描述,并提出了通过高斯分布对列车运行的干扰分布进行拟合的方法。在考虑区间内存在无干扰概率的条件下,高斯分布拟合结果优于传统指数分布拟合结果。基于列车实绩运行数据的扰动分布拟合结果,研究建立了冗余时间布局优化模型,并通过遗传算法进行求解。这一模型以列车在各个区间运行的准点率最大为优化目标,在保持列车原有始发和终到时刻的条件下,实现了冗余时间的优化布局。

% trainData: 列车运行特征的数据集
% labels: 列车晚点情况的标签

% 使用SVM进行列车晚点预测
SVMModel = fitcsvm(trainData, labels, 'KernelFunction', 'rbf', 'BoxConstraint', 1);

% 预测列车晚点情况
predictions = predict(SVMModel, trainData);

% 计算预测准确率
accuracy = sum(predictions == labels) / numel(labels);
disp(['预测准确率: ', num2str(accuracy * 100), '%']);

% 可视化预测结果
figure;
gscatter(trainData(:,1), trainData(:,2), labels);
hold on;
gscatter(trainData(:,1), trainData(:,2), predictions);
legend('实际晚点', '预测晚点');
title('列车晚点预测结果');
hold off;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值