✅ 博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)城市污水处理过程优化与控制研究,旨在解决污水处理过程中能耗高的问题。随着人口的深度城镇化,水资源危机日益严峻,污水处理在生活中的地位愈发重要。活性污泥法是国内和世界上污水处理过程中使用的主要方法。活性污泥法虽然被广泛使用,但需要通过微生物的有氧和厌氧反应降解污水中的各种污染物。为了保持有氧反应,需要使用鼓风机等设备在好氧反应区曝气。同时,需要利用回流泵等设备维持厌氧分区的硝态氮浓度。为了使污水排放达标,鼓风机和回流泵等高耗能设备经常需要高负荷工作,这使得大部分污水处理厂具有较高的能耗水平。因此,在保证污水排放达标的前提下,尽可能地降低能耗是十分必要的。
为了解决上述问题,本文首先搭建了国际通用的基准模型1号(BSM1)。BSM1是一种描述污水处理过程的详细数学模型,它包含了污水处理过程中的主要物理化学反应和生物化学反应。以此为基础,本文利用Elman神经网络建立了污水处理过程溶解氧和硝态氮的预测模型。Elman神经网络因其具有内部状态记忆功能,能够很好地捕捉时间序列数据中的动态特性,因此非常适合用于污水处理过程中的溶解氧和硝态氮浓度预测。
基于Elman神经网络建立的预测模型,本文提出了一种改进的麻雀搜索算法,并将其应用于模型预测控制(MPC)的滚动优化中。具体而言,改进的麻雀搜索算法通过模拟麻雀群体的觅食行为,寻找到最优解,从而实现对溶解氧和硝态氮浓度的精确控制。该算法通过动态调整搜索步长和方向,避免了陷入局部最优解的问题,提高了算法的全局搜索能力和收敛速度。通过控制第五分区的溶解氧浓度和第二分区的硝态氮浓度,该算法能够在保证污水处理质量的同时,优化能耗。与传统的PID控制等方法相比,该算法取得了更好的控制效果,不仅提高了污水处理过程的稳定性,还降低了能耗。
(2)除了溶解氧和硝态氮浓度的控制之外,本文还关注了污水处理过程中的能耗和水质问题。针对污水处理过程中缺乏能耗、水质关于溶解氧和硝态氮的评价模型这一问题,本文同样使用Elman神经网络建立了污水处理过程的能耗、水质评价模型。该模型通过训练历史数据,学习到了能耗与水质之间的复杂关系,为后续的优化控制提供了依据。
在此基础上,本文提出了一种改进的多目标优化算法。该算法综合考虑了能耗最小化和水质最优化两个目标,并通过引入非支配排序和拥挤距离策略,提高了帕累托最优前沿的分布均匀性。具体而言,该算法通过在复杂帕累托前沿测试函数上的HV(Hypervolume)和DM(Distance Measure)等性能指标与几种先进的多目标优化算法进行对比,结果显示,本文提出的改进方法有效地解决了多目标优化算法在帕累托最优前沿分布不均匀的问题。通过优化能耗和水质两个目标,该算法在保证污水处理质量的同时,实现了能耗的最小化,提高了污水处理过程的整体效率。
(3)为了进一步优化污水处理过程中的控制策略,本文建立了污水处理过程的分层控制模型。该模型分为上下两层,下层使用预测控制作为控制层,有效地控制污水处理过程的生产指标。具体而言,下层控制器通过实时预测溶解氧和硝态氮浓度,并根据预测结果调整鼓风机和回流泵的工作参数,实现了对污水处理过程的精确控制。上层使用改进的多目标优化算法作为决策层,实时优化污水处理过程中第五分区溶解氧和第二分区硝态氮的浓度设定值。通过优化设定值,上层控制器能够在保证排放达标的情况下,尽可能地降低能耗。
% 城市污水处理过程优化与控制
% 读取历史数据
data = readtable('historical_data.csv');
dissolved_oxygen = data.Dissolved_Oxygen;
nitrate_nitrogen = data.Nitrate_Nitrogen;
% 分割训练集和测试集
train_ratio = 0.8;
train_size = floor(train_ratio * length(dissolved_oxygen));
train_data = dissolved_oxygen(1:train_size);
test_data = dissolved_oxygen(train_size+1:end);
% 创建Elman神经网络模型
hidden_layer_size = 10;
net = elman(0:1, train_data);
net.divideFcn = ''; % 不进行数据划分
net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法
net.layers = 2;
net.biasConnect = [0; 1];
net.inputConnect = [1; 0];
net.hiddenLayerSize = hidden_layer_size;
% 训练网络
[net, tr] = train(net, 0:1, train_data);
outputs = net(0:1, test_data);
% 评估模型
predicted_DO = outputs(1, :);
actual_DO = test_data;
error = abs(predicted_DO - actual_DO);
mean_error = mean(error);
% 显示结果
figure;
subplot(2, 1, 1);
plot(0:1, train_data, 'b', 'LineWidth', 2);
hold on;
plot(0:1, test_data, 'r', 'LineWidth', 2);
title('Actual Dissolved Oxygen Concentration');
xlabel('Time Steps');
ylabel('DO Concentration');
legend('Training Data', 'Testing Data');
grid on;
subplot(2, 1, 2);
plot(0:1, predicted_DO, 'g', 'LineWidth', 2);
title('Predicted Dissolved Oxygen Concentration');
xlabel('Time Steps');
ylabel('Predicted DO Concentration');
grid on;
% 输出结果
disp(['Mean Absolute Error: ', num2str(mean_error)]);