✅ 博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)近年来,我国经济快速发展和工业化建设项目增多,水资源使用量和污水排放量逐年增长,水资源匮乏和水污染问题成为城市发展建设的首要难题。污水处理过程具有非线性、时变性、滞后性和强耦合性等特点,出水水质差、高能耗以及关键水质参数难预测等问题严重影响了污水处理过程的整体效率。因此,研究智能有效的污水处理过程建模与优化控制策略至关重要。
(2)使用 Simulink 搭建 1 号基准仿真平台(BSM1),以 BSM1 模型为研究对象进行污水处理过程的机理分析。利用国际水协会提供的入水数据文件,仿真模拟三种天气工况下的水质组分浓度和入水流量的动态变化过程,为后续的建模与优化控制提供了基础数据。
二、基于 RBF 神经网络的数据模型建立
(1)鉴于污水处理过程的非线性、大时变和强耦合特点,建立用于预测能耗、水质及出水水质参数的数据模型。选择 RBF 神经网络进行建模,并与经典的 BP 神经网络和 Elman 神经网络进行对比。
(2)RBF 神经网络具有局部逼近能力强、学习速度快等优点。在对污水处理过程的数据进行训练和测试后,发现 RBF 神经网络模型在预测效果上优于 BP 神经网络和 Elman 神经网络。它能够更准确地预测能耗、水质及出水水质参数,为污水处理过程的优化控制提供了可靠的数据支持。
三、污水处理过程的优化控制模型与算法改进
(1)在污水处理过程模型的基础上,建立优化控制模型。优化目标为能耗与水质,以 5 种关键出水水质参数为约束条件。对标准的多目标灰狼优化算法进行分析,针对其存在的问题进行改进。
(2)采用非线性递减的收敛因子和自适应调整领导者数量的方法,增强算法的收敛速度。收敛因子的非线性递减可以使算法在搜索过程中逐渐聚焦于最优解区域,而自适应调整领导者数量则可以根据搜索进程动态调整算法的探索和开发能力。
(3)加入观察策略防止求解过程陷入局部最优。观察策略可以在算法搜索过程中对解的多样性进行监测,一旦发现算法陷入局部最优,及时采取措施跳出局部最优区域,提高算法的全局搜索能力。
(4)通过加权距离更新个体的位置。加权距离考虑了不同目标函数的重要性,使个体在更新位置时能够更有针对性地朝着最优解方向移动。改进后的算法经 ZDT 系列函数测试有效后,用于解决污水处理过程的多目标优化问题,最终获得三种工况下的溶解氧和硝态氮浓度设定值。
四、步进式模糊 PID 控制器设计与实验结果分析
(1)参考 PID 控制与模糊控制的优点,设计步进式模糊 PID 控制器。该控制器结合了 PID 控制的精确性和模糊控制的适应性,能够在复杂的工况下实现对溶解氧和硝态氮浓度的有效控制。
(2)以经典的 PI 控制和步进式模糊 PID 控制为手段,在三种工况下对溶解氧和硝态氮浓度分别进行恒值控制与优化设定值控制。实验结果表明,相比于 PI 控制,步进式模糊 PID 控制方法在跟踪控制效果上更出色,即使在复杂工况下也能保持较好的控制性能。
(3)本文提出的优化控制方法在保证出水水质达标的条件下,可进一步降低污水处理过程的能耗,提高企业的经济效益。通过对不同控制方法的能耗和水质指标进行对比分析,验证了优化控制方法的有效性和优越性。
% 污水处理过程建模与优化控制代码
% 定义问题参数
numDataPoints = 1000; % 数据点数
numInputParameters = 5; % 输入参数数量
numOutputParameters = 3; % 输出参数数量
% 生成模拟数据
inputData = rand(numDataPoints, numInputParameters);
outputData = rand(numDataPoints, numOutputParameters);
% RBF 神经网络训练与测试
rbfNetwork = newrb(inputData, outputData);
% BP 神经网络训练与测试
bpNetwork = feedforwardnet([10, 5]);
bpNetwork = train(bpNetwork, inputData, outputData);
% Elman 神经网络训练与测试
elmanNetwork = elmannet(1:numInputParameters, [10, 5]);
elmanNetwork = train(elmanNetwork, inputData, outputData);
% 多目标灰狼优化算法参数
numAgents = 50;
numIterations = 100;
dimensions = 2; % 溶解氧和硝态氮浓度两个参数
% 初始化种群
population = rand(numAgents, dimensions);
% 目标函数计算
function fitness = objectiveFunction(solution)
% 模拟污水处理过程,计算能耗和水质指标
energyConsumption = solution(1) * 10 + rand();
waterQuality = solution(2) * 5 + rand();
fitness = [energyConsumption, waterQuality];
end
% 非线性递减收敛因子
alpha = @(iteration) 2 - iteration * (2 / numIterations);
% 自适应调整领导者数量
function numLeaders = adaptiveLeaders(iteration)
numLeaders = floor(numAgents * (0.5 - iteration * (0.5 / numIterations)));
end
% 观察策略
function isStuck = checkStuck(population)
% 检查种群是否陷入局部最优
diversity = std(population);
if diversity < 0.01
isStuck = true;
else
isStuck = false;
end
end
% 加权距离更新个体位置
function newPosition = updatePosition(oldPosition, leaders, weights)
a = 2 - iteration * (2 / numIterations);
r1 = rand();
r2 = rand();
A = 2 * a * r1 - a;
C = 2 * r2;
newPosition = oldPosition;
for i = 1:numLeaders
D = abs(C * leaders(i, :) - oldPosition);
newPosition = newPosition + A * D * weights(i);
end
end
% 多目标灰狼优化算法主体
for iteration = 1:numIterations
% 计算适应度值
fitnessValues = arrayfun(@objectiveFunction, population);
% 选择领导者
[sortedFitness, index] = sortrows(fitnessValues);
leaders = population(index(1:adaptiveLeaders(iteration)), :);
% 观察策略
if checkStuck(population)
% 采取措施跳出局部最优
population = rand(numAgents, dimensions);
end
% 更新个体位置
weights = rand(numLeaders, 1);
for i = 1:numAgents
population(i, :) = updatePosition(population(i, :), leaders, weights);
end
end
% 步进式模糊 PID 控制器参数
kp = 0.5;
ki = 0.1;
kd = 0.2;
% 模糊规则定义
fis = readfis('fuzzyPID.fis');
% 模拟污水处理过程
inputSignal = rand(numDataPoints, 1);
desiredOutput = rand(numDataPoints, 1);
% PI 控制
piOutput = zeros(numDataPoints, 1);
integralError = 0;
for i = 1:numDataPoints
error = desiredOutput(i) - inputSignal(i);
integralError = integralError + error;
piOutput(i) = kp * error + ki * integralError;
end
% 步进式模糊 PID 控制
fuzzyPidOutput = zeros(numDataPoints, 1);
lastError = 0;
lastDerivativeError = 0;
for i = 1:numDataPoints
error = desiredOutput(i) - inputSignal(i);
derivativeError = (error - lastError);
fuzzyInput = [error, derivativeError];
output = evalfis(fuzzyInput, fis);
fuzzyPidOutput(i) = output + kp * error + ki * integralError + kd * derivativeError;
lastError = error;
lastDerivativeError = derivativeError;
end
% 结果分析
disp('PI 控制输出:');
disp(piOutput);
disp('步进式模糊 PID 控制输出:');
disp(fuzzyPidOutput);