商品储位分配优化毕业论文【附代码+数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)Q 企业拣货作业问题分析

  • 现行策略局限:Q 企业当前采用分类存储策略,这种策略在一定程度上对商品进行了分类管理,但存在明显的不足。它忽视了商品之间的关联性,在实际拣货过程中,很多订单可能包含具有关联性的商品,例如购买电脑的同时可能会购买鼠标、键盘等周边设备。然而,由于分类存储,这些相关商品可能被放置在不同的区域,导致拣货人员在拣选过程中需要频繁地在不同区域之间移动,增加了拣选路径和时间。
  • 销量差异影响:同时,该策略也未充分考虑商品的出库频率差异。一些商品可能是畅销品,出库频率高,而另一些则是滞销品,出库频率低。但在分类存储下,畅销品和滞销品可能没有得到合理的区分和布局,使得拣货人员在处理大量订单时,需要花费大量时间在寻找不同出库频率的商品上。这不仅导致拣选成本增加,包括人力成本和时间成本,还使得拣选时间延长,影响了商品的出库效率,进而可能影响客户对履单时效的满意度。这种现状使得仓库作业面临分步拣选耗时长的问题,因为拣货人员需要在不同区域依次拣选商品,无法实现高效的批量拣选。同时,货架搬运工作量庞大,由于商品布局不合理,可能需要频繁地搬运货架来满足拣选需求,增加了仓库运营的复杂性和成本。
  • 研究必要性引出:这些问题的存在凸显了对 Q 企业储位分配进行优化研究的必要性。通过深入分析拣货作业中的问题,可以为后续制定更合理的储位分配方案提供实践依据和方向。只有解决了这些问题,才能提高仓库的周转水平,降低运营成本,满足消费者对履单时效的期望,提升企业的竞争力。

(2)储位分配模型构建与求解

  • 模型目标设定:建立以拣选路长最小化为目标的储位分配模型。拣选路长是衡量仓库拣货效率的重要指标之一,减少拣选路长可以直接提高拣货速度,降低时间成本。在实际仓库中,拣货人员每次拣选商品都需要在货架之间移动,较长的拣选路径会导致时间浪费和体力消耗。因此,将拣选路长最小化作为目标,能够从根本上优化拣货作业流程。
  • 考虑因素综合:综合考虑商品之间的相关性和出库频率差异。商品相关性方面,通过对历史订单数据的分析,确定哪些商品经常一起被购买,将具有较高相关性的商品放置在相邻的储位,可以减少拣货人员的移动距离。例如,将洗发水和护发素等相关洗漱用品放置在一起,当有订单包含这两种商品时,拣货人员可以一次性在相近的位置完成拣选,而无需在仓库中来回奔波。出库频率差异方面,将出库频率高的商品放置在更易于拣选的位置,通常是靠近仓库出入口或拣货通道的位置,这样可以减少拣货人员到达这些商品储位的时间。对于出库频率低的商品,则可以放置在相对较远或不太方便的位置,但要保证其存储方式便于管理和查找。
  • 两阶段求解设计:采用两阶段的模型求解设计来解决一品多位储位分配模型解空间庞大难以迅速求解的问题。在第一阶段,可能采用一些启发式算法或初步的筛选策略,对商品进行初步的分组和布局。例如,根据商品的大类或一些基本的特征进行分组,将相关性较强的商品划分到同一个初步的区域内。在第二阶段,再对每个小组内的商品进行更精细的储位分配,考虑具体的出库频率、货架空间等因素,通过优化算法如模拟退火算法、遗传算法等进行求解,以找到最优的储位分配方案。这种两阶段的设计可以在保证求解质量的同时,提高求解效率,使得模型能够在可接受的时间内得到较为理想的结果。

(3)优化方案验证与效果

  • 数据引入验证:引入电商平台订单数据和实际仓储参数来验证储位分配优化方案的有效性。电商平台订单数据包含了丰富的商品购买信息,通过对大量订单的分析,可以准确地了解商品的相关性和出库频率。实际仓储参数如仓库的布局、货架的尺寸和数量等,则为模型的应用提供了实际的场景约束。将这些数据和参数代入优化模型中,模拟实际的拣货作业过程,计算在优化方案下的拣选路长和货架搬运次数等指标。
  • 效果显著呈现:验证结果显示,优化方案指引下拣选路长最高缩减了 30%。这意味着拣货人员在完成相同数量的订单时,移动的距离大幅减少,从而节省了时间和体力。总货架搬运次数最高降低了 47%,这表明仓库中货架的搬运工作量显著减少,降低了设备的磨损和运营成本。优化后的储位分配方案达到了少量次搬运货架完成多品订单的效果,即通过合理的储位布局,使得在一次货架搬运过程中可以满足多个相关商品的拣选需求,提高了作业效率。同时,减少了大容量商品被动搬运 AGV 无效负重的概率,因为大容量商品如果被不合理地频繁搬运,会增加 AGV 的能耗和损耗,而优化方案避免了这种情况的发生。整体上,大幅缩减了拣选路长和降低了拣选成本,提高了仓库的运营效率和经济效益,为 Q 企业的仓储管理带来了显著的改善和提升。
% 定义仓库和商品相关参数
numShelves = 10; % 货架数量
shelfCapacity = 50; % 每个货架的容量
numProducts = 50; % 商品数量

% 初始化商品相关性矩阵(假设已经有计算好的相关性数据,这里随机生成示例)
productCorrelationMatrix = rand(numProducts, numProducts);
productCorrelationMatrix = (productCorrelationMatrix + productCorrelationMatrix') / 2; % 使其对称
diag(productCorrelationMatrix) = 1; % 自身相关性为1

% 初始化商品出库频率向量(假设已经有统计好的数据,这里随机生成示例)
productFrequencyVector = rand(numProducts, 1);

% 定义储位分配矩阵
storageLocationMatrix = zeros(numProducts, numShelves);

% 定义拣选路径长度矩阵(初始化为无穷大)
pickPathLengthMatrix = inf(numProducts, numProducts);

% 模拟计算拣选路径长度(这里简单假设货架之间距离相等,实际中需要根据仓库布局计算)
for i = 1:numShelves
    for j = 1:numShelves
        if i ~= j
            pickPathLengthMatrix(i, j) = abs(i - j); % 简单示例,实际距离计算更复杂
        end
    end
end

% 第一阶段:初步分组
% 可以根据商品类别或一些简单规则进行初步分组
productGroups = cell(numProducts, 1);
for i = 1:numProducts
    groupIndex = ceil(i / 5); % 简单示例,每5个商品为一组
    productGroups{i} = groupIndex;
end

% 第二阶段:精细储位分配
for iteration = 1:100 % 迭代次数(可根据实际情况调整)
    % 随机生成一个新的储位分配方案
    newStorageLocationMatrix = zeros(numProducts, numShelves);
    for i = 1:numProducts
        shelfIndex = randi(numShelves); % 随机选择一个货架
        newStorageLocationMatrix(i, shelfIndex) = 1;
    end
    
    % 计算当前方案的总拣选路长
    totalPickPathLength = 0;
    for i = 1:numProducts
        for j = 1:numProducts
            if productCorrelationMatrix(i, j) > 0.5 % 假设相关性阈值为0.5
                productLocationI = find(newStorageLocationMatrix(i,:) == 1);
                productLocationJ = find(newStorageLocationMatrix(j,:) == 1);
                pickPathLength = pickPathLengthMatrix(productLocationI, productLocationJ);
                totalPickPathLength = totalPickPathLength + pickPathLength * productFrequencyVector(i) * productFrequencyVector(j) * productCorrelationMatrix(i, j);
            end
        end
    end
    
    % 如果新方案的总拣选路长更短,则接受新方案
    if totalPickPathLength < totalPickPathLengthMatrix
        storageLocationMatrix = newStorageLocationMatrix;
        totalPickPathLengthMatrix = totalPickPathLength;
    end
end

% 输出储位分配结果
disp('储位分配结果:');
for i = 1:numProducts
    productLocation = find(storageLocationMatrix(i,:) == 1);
    disp(['商品 ', num2str(i), ' 放置在货架 ', num2str(productLocation)]);
end

% 计算货架搬运次数(简单示例,假设每次拣选都可能导致货架搬运)
totalShelfMovements = 0;
for i = 1:numProducts
    productLocation = find(storageLocationMatrix(i,:) == 1);
    if randi(2) == 1 % 简单假设50%概率需要搬运货架(实际情况更复杂)
        totalShelfMovements = totalShelfMovements + 1;
    end
end
disp(['总货架搬运次数:', num2str(totalShelfMovements)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值