✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 近年来,深度神经网络(Deep Neural Networks, DNN)在计算机视觉、自然语言处理(Natural Language Processing, NLP)、音频处理和图数据处理等领域取得了巨大成功。然而,DNN也面临对抗样本的威胁,对抗样本是通过向原始样本添加人类无法轻易察觉的扰动生成的,这些对抗样本会导致模型的错误分类。尤其是在医疗、自动驾驶和金融等现实场景中,对抗样本的出现可能对财产和健康安全造成重大危害,因此DNN模型的安全性成为亟待解决的问题。在计算机视觉和音频领域,对抗攻击已经得到了较为广泛的应用,但在NLP领域中,如何有效地实现对抗攻击仍存在很大的挑战。NLP中的文本是离散的数据空间,仅通过简单替换单词生成对抗样本可能会导致文本语义的巨大偏差。因此,研究如何在不改变整体语义的情况下,使用语义相近的同义词替换句子中的关键单词,以生成对抗样本并使模型做出错误分类,是对抗性文本生成中的首要问题。现有的大多数文本对抗攻击方法主要在黑盒soft-label设置下,通过模型的梯度信息或置信度实现对抗攻击。而在hard-label设置下,仅依靠模型的顶部预测标签来实现对抗攻击显得更具挑战性和现实意义。现有方法通常采用基于种群的遗传优化算法实现hard-label对抗攻击,但这类方法需要大量查询,导致效率低下。因此,本文提出了一种新的基于种群进化的对抗性文本生成算法,通过多角度初始化对抗样本和基于种群进化的策略来提升攻击效率与对抗样本质量。
(2) 在研究过程中,本文首先对NLP和对抗性攻击的研究意义及背景进行了梳理,对现有语言模型和对抗样本生成技术的研究现状进行了总结,并对现有的黑盒hard-label攻击方法进行了归纳和分析。在现有方法的基础上,本文设计并提出了一种基于种群进化的全新对抗性文本生成算法。为了在生成对抗样本的过程中提高效率,本文在对抗样本的初始化阶段引入了多角度的初始化策略。多角度初始化策略的核心是通过多种视角对初始样本进行扰动,使得生成的初始对抗样本在多样性上更加丰富,进而提高整体的攻击成功率。此外,针对文本中的单词进行重要性分析,以识别对文本分类起关键作用的单词,并优先对这些单词进行高语义相似度的同义词替换,从而在保证文本语义不变的前提下,生成对模型具有误导作用的对抗样本。这种基于重要性判断的同义词替换方法能够确保生成的对抗样本在语义上尽可能地接近原始文本,同时又足以干扰模型的分类结果。基于种群进化的优化策略则通过将多个候选对抗样本存入种群中进行组合优化,不断进化和筛选最优的对抗样本,以进一步提高生成对抗样本的质量和攻击的有效性。
(3) 在实验验证方面,本文在多个深度学习模型和预训练语言模型上对提出的对抗性文本生成方法进行了实验对比,包括Word CNN、Word LSTM等常用神经网络模型,以及BERT、ALBERT、DistilBERT、RoBERTa等预训练语言模型。此外,本文还在阿里云、Google Cloud、Allen NLP、FastText等多个API平台上进行了测试,通过对不同任务的数据集(如情感分类、自然语言推理、有毒评论检测等)进行对比,证明了本文方法在对抗攻击的效率和生成对抗样本的质量方面具有显著优势。具体而言,本文的方法在黑盒hard-label的场景下,不仅提高了对抗攻击的成功率,还显著减少了查询次数,证明了新方法在对抗样本生成效率上的改进。同时,通过对不同长度和类型文本的实验,本文的方法在短文本和长文本任务中均表现出较高的对抗成功率和较好的语义相似度,这表明所提出的多角度初始化策略和基于重要性判断的同义词替换策略能够有效适应不同类型的文本对抗攻击任务。此外,本文的方法在各种不同的攻击场景中均表现出较强的鲁棒性,这意味着它在多样化的攻击目标和模型架构中都具备较好的适应能力。
(4) 为了进一步检验所提方法在实际应用中的效果,本文设计并实现了一个文本对抗攻击算法对比评测系统。该系统支持多种不同的攻击算法和模型选择,用户可以根据需求选择不同的数据集和模型进行实验对比。系统主要展示了对抗攻击的成功率、扰动率、语义相似度和查询次数等关键指标,通过可视化界面直观地展示各个算法在不同任务中的表现。实验表明,本文提出的基于种群优化的对抗性文本生成方法在多种指标上均优于现有的经典攻击方法,特别是在对抗样本的生成效率和质量上,具有明显的优势。系统应用的开发为对抗攻击的研究和实践提供了有力的工具,不仅帮助研究人员快速测试和验证不同的攻击方法,还为模型的安全性评估提供了直观的数据支持。通过这一系统,研究人员可以更好地理解对抗攻击的机制,并对不同模型的安全性进行深入评估,进而制定更加有效的防御策略。
(5) 总的来说,本文通过对基于种群优化的对抗性文本生成技术的深入研究,提出了一种具有创新性和高效性的攻击方法,并通过多个实验验证了其在提升对抗攻击效率和对抗样本质量方面的优势。本文的方法不仅在理论上对现有的对抗性文本生成技术进行了改进,在实际应用中也表现出很高的实用性和鲁棒性,为文本对抗攻击和防御技术的进一步发展提供了重要的参考。
function adversarial_text = AdversarialTextGeneration(data, labels)
% 参数初始化
max_iterations = 100;
population_size = 20;
[num_samples, num_features] = size(data);
% 初始化种群
population = InitializePopulation(population_size, num_features);
best_solution = population(1, :);
best_fitness = EvaluateFitness(best_solution, data, labels);
% 迭代过程
for iter = 1:max_iterations
for i = 1:population_size
% 计算适应度
fitness = EvaluateFitness(population(i, :), data, labels);
% 更新最佳解决方案
if fitness > best_fitness
best_fitness = fitness;
best_solution = population(i, :);
end
end
% 种群进化
new_population = EvolvePopulation(population, best_solution);
population = new_population;
% 添加混沌映射增加种群多样性
if mod(iter, 10) == 0
population = ChaosMapping(population);
end
end
% 返回生成的对抗文本
adversarial_text = GenerateAdversarialText(best_solution, data);
end
function population = InitializePopulation(population_size, num_features)
% 初始化种群为随机二进制矩阵
population = randi([0, 1], population_size, num_features);
end
function fitness = EvaluateFitness(solution, data, labels)
% 计算当前特征子集的适应度
selected_data = data(:, solution == 1);
model = fitcsvm(selected_data, labels);
cv = crossval(model);
fitness = 1 - kfoldLoss(cv);
end
function new_population = EvolvePopulation(population, best_solution)
% 使用交叉和变异策略进化种群
[rows, cols] = size(population);
new_population = population;
for i = 1:rows
if rand < 0.5
% 交叉操作
partner = randi([1, rows]);
crossover_point = randi([1, cols]);
new_population(i, :) = [population(i, 1:crossover_point), population(partner, crossover_point+1:end)];
else
% 变异操作
mutation_rate = 0.1;
for j = 1:cols
if rand < mutation_rate
new_population(i, j) = 1 - new_population(i, j);
end
end
end
end
end
function chaotic_population = ChaosMapping(population)
% 使用混沌映射增加种群多样性
[rows, cols] = size(population);
chaotic_population = population;
for i = 1:rows
for j = 1:cols
if rand < 0.3
chaotic_population(i, j) = 1 - chaotic_population(i, j);
end
end
end
end
function adversarial_text = GenerateAdversarialText(solution, data)
% 根据最佳解决方案生成对抗文本
selected_data = data(:, solution == 1);
adversarial_text = ConvertToText(selected_data);
end