✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)基于核空间优化 SVM 的单用户频谱感知算法
- 在传统频谱感知中,算法常受认知用户数量和噪声波动影响,导致频谱感知检测性能欠佳。为解决此问题,提出基于核空间优化 SVM 的单用户频谱感知算法。该算法将核空间优化、SVM 与频谱感知相结合,首先对信号进行降噪处理并提取特征,构建特征向量用于训练和学习。例如,在实际通信环境中,信号可能会受到各种噪声干扰,通过合适的降噪方法可以去除这些干扰,提取出更能反映信号本质的特征。然后,利用改进后的被囊群算法优化训练搜索,以得到最佳核函数参数 σ 和惩罚系数 C。这一步骤非常关键,因为合适的参数设置能够显著提高 SVM 的分类性能,从而更准确地判断频谱是否被占用。仿真结果表明,该算法在低信噪比时能有效提升检测率,具有良好的鲁棒性。这意味着在复杂的通信环境下,即使信号质量较差,该算法也能较为准确地感知频谱状态,为后续的频谱利用提供可靠依据。
(2)基于 Circle 阿基米德优化算法的频谱分配方案 - 阿基米德优化算法在频谱分配中存在寻优速度慢、精度低及易受局部极值点影响的缺陷。为此,基于图论模型提出一种基于 Circle 阿基米德优化算法的频谱分配方案。首先,借助 Circle 混沌扰动对算法初始化过程进行改进。混沌扰动可以使初始解更均匀地分布在搜索空间,增加算法找到全局最优解的可能性。例如,在频谱分配中,不同的频率资源组合众多,通过混沌扰动初始化可以更全面地探索可能的分配方案。其次,利用 levy 飞行策略对全局搜索能力进行优化。levy 飞行策略能够使算法在搜索过程中更有效地跨越不同区域,避免陷入局部最优。最后,引入分段权值策略进行位置更新过程优化,通过 Sigmod 函数对浸入个体的加速度进行离散化处理,并将其应用于频谱分配。仿真表明,该频谱分配策略不仅在解决频谱分配上具有可行性,而且在求解网络效益时有很大提升。这意味着通过这种优化算法进行频谱分配,能够更合理地利用频谱资源,提高网络的整体性能和效益。
(3)基于灰狼优化算法的频谱分配策略 - 灰狼算法在解决频谱分配问题上虽有强大的全局搜索能力,但存在初始解不规律和局部搜索能力较差的问题。基于图论模型提出基于灰狼优化算法的频谱分配策略。首先,引入 Sin 混沌初始化和反向学习策略对灰狼种群初始化重新定义。Sin 混沌初始化可以使初始种群更具多样性,反向学习策略则可以进一步扩大搜索范围,提高找到更优解的概率。例如,在频谱分配的初始阶段,通过这种方式可以更全面地探索不同的频谱分配组合。其次,引入随机游动策略优化局部搜索。这可以使算法在找到一个较优解后,更细致地在其附近搜索,提高解的精度。最后,通过 Sigmod 函数对灰狼位置更新进行二值化处理,并将其应用于频谱分配。仿真表明,与经典群智算法频谱分配相比,该算法收敛速度快,寻优能力强,能够有效提升频谱分配时的网络效益。这说明在频谱分配过程中,该策略能够更快地找到较好的分配方案,提高频谱资源的利用效率,满足不断增长的通信需求。
% 假设频谱带宽为10MHz,分为100个频段
bandwidth = 10e6;
num_bands = 100;
bandwidth_per_band = bandwidth / num_bands;
% 假设存在5个用户
num_users = 5;
% 随机生成用户信号强度(假设范围在0-10之间)
user_signal_strengths = randi([0, 10], num_users, num_bands);
% 随机生成噪声强度(假设范围在0-5之间)
noise_strengths = randi([0, 5], num_users, num_bands);
% 初始化为未检测到信号(0表示未检测到,1表示检测到)
detection_result = zeros(num_users, num_bands);
% 基于核空间优化SVM的频谱感知
% 假设已经有训练好的SVM模型(这里简单模拟)
% 假设核函数为高斯核函数,需要优化的参数为sigma和惩罚系数C
sigma = 2; % 初始值
C = 5; % 初始值
% 模拟特征提取(这里简单取信号强度与噪声强度的比值作为特征)
features = user_signal_strengths./ noise_strengths;
% 训练SVM(这里简单模拟)
svm_model = fitcsvm(features, detection_result, 'KernelFunction', 'rbf', 'KernelScale', sigma, 'BoxConstraint', C);
% 预测频谱感知结果
predicted_detection_result = predict(svm_model, features);
% 基于Circle阿基米德优化算法的频谱分配(假设已经有图论模型的邻接矩阵表示用户与频段的关系)
% 假设邻接矩阵adjacency_matrix,其中adjacency_matrix(i,j)=1表示用户i可以使用频段j,否则为0
adjacency_matrix = randint(num_users, num_bands);
% 初始化频谱分配方案(全为0表示初始未分配)
spectrum_allocation = zeros(num_users, num_bands);
% Circle阿基米德优化算法参数
max_iterations = 100; % 最大迭代次数
population_size = 20; % 种群大小
% 初始化种群(每个个体表示一种频谱分配方案)
population = zeros(population_size, num_users * num_bands);
for i = 1:population_size
population(i, :) = randperm(num_users * num_bands);
end
% 计算适应度函数(这里假设网络效益为用户分配到的频段总带宽与信号质量的乘积之和)
function fitness = calculate_fitness(allocation, adjacency_matrix, user_signal_strengths, bandwidth_per_band)
fitness = 0;
num_users = size(adjacency_matrix, 1);
num_bands = size(adjacency_matrix, 2);
for i = 1:num_users
for j = 1:num_bands
if adjacency_matrix(i, j) == 1 && allocation((i - 1)*num_bands + j) == 1
fitness = fitness + bandwidth_per_band * user_signal_strengths(i, j);
end
end
end
end
% Circle阿基米德优化算法主循环
for iteration = 1:max_iterations
% 计算每个个体的适应度
fitness_values = zeros(population_size, 1);
for i = 1:population_size
allocation = reshape(population(i, :), [num_users, num_bands]);
fitness_values(i) = calculate_fitness(allocation, adjacency_matrix, user_signal_strengths, bandwidth_per_band);
end
% 找到最优个体和最优适应度
[best_fitness, best_index] = max(fitness_values);
best_allocation = reshape(population(best_index, :), [num_users, num_bands]);
% 更新种群
for i = 1:population_size
% Circle混沌扰动初始化(这里简单模拟)
if rand < 0.5
new_individual = best_allocation + 0.1 * (rand(num_users, num_bands) - 0.5);
else
new_individual = best_allocation - 0.1 * (rand(num_users, num_bands) - 0.5);
end
new_individual = round(new_individual); % 离散化
new_individual(new_individual > 1) = 1;
new_individual(new_individual < 0) = 0;
population(i, :) = reshape(new_individual, [1, num_users * num_bands]);
end
end
% 最终的频谱分配方案
final_spectrum_allocation = best_allocation;
% 基于灰狼优化算法的频谱分配(假设已经有图论模型的邻接矩阵表示用户与频段的关系)
% 初始化灰狼种群
gray_wolf_population = zeros(population_size, num_users * num_bands);
for i = 1:population_size
gray_wolf_population(i, :) = randperm(num_users * num_bands);
end
% 灰狼优化算法参数
max_iterations_gwo = 100; % 最大迭代次数
% 灰狼优化算法主循环
for iteration = 1:max_iterations_gwo
% 计算每个个体的适应度
fitness_values_gwo = zeros(population_size, 1);
for i = 1:population_size
allocation = reshape(gray_wolf_population(i, :), [num_users, num_bands]);
fitness_values_gwo(i) = calculate_fitness(allocation, adjacency_matrix, user_signal_strengths, bandwidth_per_band);
end
% 找到最优个体和最优适应度
[best_fitness_gwo, best_index_gwo] = max(fitness_values_gwo);
best_allocation_gwo = reshape(gray_wolf_population(best_index_gwo, :), [num_users, num_bands]);
% 更新灰狼位置
a = 2 - iteration * (2 / max_iterations_gwo); % 控制参数
for i = 1:population_size
for j = 1:num_users * num_bands
r1 = rand();
r2 = rand();
A1 = 2 * a * r1 - a;
C1 = 2 * r2;
D_alpha = abs(C1 * best_allocation_gwo(j) - gray_wolf_population(i, j));
X1 = best_allocation_gwo(j) - A1 * D_alpha;
r3 = rand();
r4 = rand();
A2 = 2 * a * r3 - a;
C2 = 2 * r4;
D_beta = abs(C2 * X1 - gray_wolf_population(i, j));
X2 = X1 - A2 * D_beta;
r5 = rand();
r6 = rand();
A3 = 2 * a * r5 - a;
C3 = 2 * r6;
D_gamma = abs(C3 * X2 - gray_wolf_population(i, j));
X3 = X2 - A3 * D_gamma;
% Sigmod函数二值化处理
gray_wolf_population(i, j) = round(1 / (1 + exp(-X3)));
end
end
end
% 最终的灰狼优化算法频谱分配方案
final_spectrum_allocation_gwo = best_allocation_gwo;
disp('基于核空间优化SVM的频谱感知结果:');
disp(predicted_detection_result);
disp('基于Circle阿基米德优化算法的频谱分配方案:');
disp(final_spectrum_allocation);
disp('基于灰狼优化算法的频谱分配方案:');
disp(final_spectrum_allocation_gwo);