✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 土地利用类型的转换与动态度变化
在新疆天山北部地区,通过分析1995年、2005年、2015年三期遥感影像,结合统计数据和基础资料,获取了近20年的土地利用景观格局变化数据。研究发现,草地和未利用地作为研究区域内的优势土地利用类型,不断向其他类型转换。耕地和城乡工矿居民用地呈现增加趋势,而林地面积减少,水域面积变化较小。在研究期间,前10年土地利用动态度变化剧烈,而后10年则相对平稳。这一变化反映了土地利用类型的动态转换和区域发展的趋势。
(2) 土地利用类型的利用程度与趋势
研究区域内草地、林地、水域、未利用地的利用率较低,而城镇用地的利用程度显著提高,并呈现逐渐增加的趋势。北部沙漠环境和南部冰川地区的利用程度相对较小。这一现象揭示了不同土地利用类型的利用效率和发展趋势,对于理解土地资源的分配和优化具有重要意义。
(3) 土地利用景观指数的空间分布特征
从土地利用景观指数的空间分布来看,多样性指数、优势度指数和均匀度指数表现出一定的规律性。研究区域的东北部和中南部、中东部土地利用景观的复杂性较小,表现为多样性指数低,优势度大;在人类活动最强烈和最薄弱的区域,多样性指数小,优势度大,景观均匀度指数低。这些指数的空间分布特征为理解土地利用景观格局提供了量化的视角。
(4) 土地利用变化的驱动力分析
人口增加和经济增长、城市化进程加快以及国家政策的不断完善是研究区景观格局和土地利用变化的主要驱动力。自然因素如地质灾害等也会对区域土地变化产生一定的影响。这些驱动力的分析有助于识别影响土地利用变化的关键因素,为制定土地利用政策和规划提供科学依据。
import rasterio
from rasterio.plot import show
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 读取遥感影像
with rasterio.open('path_to_your_image.tif') as src:
image = src.read(1) # 读取第一个波段
affine = src.transform
crs = src.crs
# 显示影像
plt.figure(figsize=(10, 10))
show(image, ax=plt.gca(), cmap='viridis')
plt.title('Remote Sensing Image')
plt.show()
# 假设我们有一个训练数据集,包含土地利用类型的标签
# 这里使用随机数据作为示例
train_data = np.random.randint(0, 5, size=(100, 2)) # 100个样本点,5种土地利用类型
train_labels = np.random.randint(0, 5, size=100) # 标签
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(train_data, train_labels, test_size=0.2, random_state=42)
# 随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
# 预测
y_pred = clf.predict(X_test)
# 显示分类结果
plt.figure(figsize=(10, 10))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='viridis')
plt.title('Land Use Classification')
plt.show()
# 保存分类结果到新的影像文件
classified_image = clf.predict(image.reshape(-1, 1)).reshape(image.shape)
with rasterio.open('classified_image.tif', 'w', driver='GTiff',
width=image.shape[1], height=image.shape[0],
count=1, dtype=classified_image.dtype,
crs=crs, transform=affine) as dst:
dst.write(classified_image, 1)