模块化多电平直流变换器中子模块电容电压自平衡与循环调制优化研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)模块化多电平直流变换器循环调制方法体系的基础分析

在全球可持续发展背景下,直流架构在电力网络中的应用愈发重要,特别是在新能源发电、储能和负荷大量接入的情况下。模块化多电平直流变换器(MMDC)在中高压直流互联变换技术中优势明显,但子模块串联带来的分布式悬浮电容平衡问题严重制约了其发展。

传统的子模块闭环控制方案存在诸多弊端。它极度依赖实时子模块电压采样与排序,这一过程计算复杂度极高,会产生高昂的实现成本。而且在高速通信环境下,其可靠性大打折扣,这种状况严重阻碍了 MMDC 朝着高频化方向进一步发展。与此同时,现有的子模块开环平衡方法尚在起步阶段,还无法应对 MMDC 复杂多变的拓扑结构以及灵活的调制需求。

我们设计了遵循子模块一致性特征的循环调制方法体系。深入探究子模块开关序列对电容电压的天然约束能力至关重要。基于满秩开关矩阵原理,我们努力发展普适的子模块电容电压自平衡评判准则。这一准则与 MMDC 调制的共性需求相结合,能够实现具有自平衡能力的循环调制的优化。

首先来分析循环调制的特征内涵与自平衡原理。通过对 MMDC 通用桥臂拓扑结构和直流变压原理的研究,我们建立模型来分析开关矩阵和子模块稳态电容电压之间的约束关系。在这个过程中我们发现,自平衡循环调制的核心特征与关键需求在于构建满秩且具有循环特性的开关矩阵。

接着,我们要考虑 MMDC 对调制灵活性、平衡普适性和装备紧凑性的共性需求。目前现有的基础循环调制存在不少问题,比如无法实现多电平输出,这限制了 MMDC 在一些对电压输出精度要求较高场景下的应用。在面对非互质案例时,难以保证自平衡性,使得电容电压可能出现失衡现象,影响整个系统的稳定性。而且子模块电容电压纹波较大,这不仅对电容等硬件设备的要求更高,增加了成本,还可能对整个系统的性能产生负面影响,比如降低电能质量等。这些不足为我们指明了循环调制方法体系进一步发展和完善的方向。

(2)基于占空比矩阵的多电平循环调制

MMDC 在交流环节的输入激励方面,传统方波调制下桥臂生成的两电平电压 dv/dt 较大。这种大 dv/dt 会对磁性元件和绝缘材料造成损伤,从而大大降低装备的使用寿命。为了解决这一问题,我们提出了基于占空比矩阵的多电平循环调制方法。

我们的目标是将具有自平衡特性的 MMDC 循环调制从单一的方波输出拓展到更灵活多变的任意电压形态。通过改变基波周期内各子模块的占空比,能够实现子模块在基频开关动作下的多电平电压输出。这充分利用了 MMDC 模块化多电平结构的灵活性,使得电压输出更加符合实际应用中的复杂需求。

具体而言,我们基于桥臂回路建立模型,采用占空比矩阵来表征子模块的循环开关序列。通过求解矩阵特征值来判定其满秩性,从而得出子模块电容电压自平衡的通用条件。这个通用条件就是各电平中子模块投入数的最大公因数必须为 1。这一条件为判断子模块电容电压是否能自平衡提供了理论依据。

进一步地,根据多电平调制的典型设计,我们对上述通用判定条件进行简化。由此推导出适用于各电平高度相同的广义互质准则,以及最大电压输出下的单子模块投切准则。这些准则为 MMDC 多电平循环调制在实际应用中提供了直观且实用的参考。例如,在设计一个特定电压输出要求的 MMDC 系统时,工程师可以依据这些准则来确定子模块的投切方式和参数设置,从而更好地实现子模块电容电压的自平衡,同时满足电压输出的要求,提高整个系统的稳定性和可靠性。

(3)基于互质特征多项式的双循环调制与基于循环排列矩阵的最优循环调制

对于 MMDC 自平衡普适性的需求,我们提出了基于互质特征多项式的双循环调制。当桥臂子模块数为非质数时,基础循环调制存在明显问题。它无法保证子模块开关序列的线性无关性,这就导致子模块电容电压存在失衡风险。而且在这种情况下,子模块电容电压呈现出分组特性,进一步影响了系统的稳定性。

针对这些问题,我们提出了包含两组循环开关序列的双循环调制方法,并引入循环矩阵特征多项式这一数学概念。通过理论证明,我们可以确定拓展后的开关矩阵具有满秩特性。这意味着双循环调制在任意桥臂子模块数与运行工况下都能保持普适的自平衡能力。然而,新的问题又出现了,两组循环序列直接组合会导致子模块一致性丢失,并且电容纹波会加倍。为了解决这个问题,我们通过交错排列来自两组序列的开关模式,并改变两组序列交错的排列顺序,在保持双循环调制自平衡性的基础上,使子模块开关动作恢复一致,同时有效地降低了子模块电容电压的纹波。

另外,针对 MMDC 电容纹波抑制的需求,我们提出了基于循环排列矩阵的最优循环调制。在单位功率下,如果电容电压纹波越大,那么为了保证系统的稳定运行,就需要配备更大容量的子模块电容。这无疑增加了 MMDC 的硬件成本,并且不利于其功率密度的提升。针对基础循环调制因充 / 放电基波周期连续排布而导致纹波较大的问题,我们采取了相应的解决措施。

我们通过分解子模块电容电压纹波的组成,提炼出与开关序列顺序相关的本征纹波分量。基于列写的本征纹波表达式,逐个选取使各基波周期电容电压偏差最小的开关模式。并且我们证明了基波周期的局部最优解的集合就是循环周期内纹波最低的全局最优解,从而获得了理论最优的子模块开关序列。再引入广义循环排列矩阵概念,将递推表达的最优开关序列公式化,构造出最优循环调制。我们还说明了其开关矩阵的循环特质与满秩特性,证明了在最优循环调制下子模块开关动作一致、电容纹波最优,而且稳态电压能够自平衡。通过这些方法,我们能够更好地满足 MMDC 在不同工况下的运行需求,提高其性能和可靠性。

 

# 模拟MMDC子模块电容电压计算

# 定义子模块数量、电平数等参数
num_submodules = 10
num_levels = 5

# 初始化子模块电容电压列表
submodule_voltages = [0] * num_submodules

# 模拟占空比矩阵(这里简单随机生成示例数据)
import random
duty_cycle_matrix = [[random.random() for _ in range(num_levels)] for _ in range(num_submodules)]

# 模拟基波周期数
num_cycles = 10

# 模拟子模块电容电压计算函数
def calculate_voltage():
    for cycle in range(num_cycles):
        for submodule in range(num_submodules):
            # 根据占空比计算电压变化(这里只是简单模拟,实际更复杂)
            voltage_change = sum([duty_cycle_matrix[submodule][level] for level in range(num_levels)])
            submodule_voltages[submodule] += voltage_change

# 主函数
def main():
    calculate_voltage()
    print("子模块电容电压:", submodule_voltages)

main()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值