电动汽车多主体利益下的选址定容和有序用电运行决策优化研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 综合考虑充电站经营者和电动汽车用户利益的充电站选址定容模型

电动汽车充电站的布局规划是一个复杂的多目标优化问题,需要综合考虑充电站经营者和电动汽车用户的利益。由于电动汽车用户充电行为的随机性和不确定性,充电站的选址定容往往难以与实际需求匹配,导致部分充电站出现“有车无桩、有桩无车”的现象。为了解决这一问题,本文提出了一种综合考虑充电站经营者和电动汽车用户利益的充电站选址定容模型。

该模型首先分析了充电站选址定容的主要影响因素,包括地理位置、交通流量、电力供应能力等。同时,详细研究了充电站经营者的成本构成,如建设成本、运维成本、电费成本等,以及电动汽车用户的成本构成,如行驶至充电站的耗电成本、等待时间成本等。通过这些分析,模型能够更全面地反映各方的利益诉求。

在模型构建过程中,本文引入了用户行为模型,通过计算电动汽车用户行驶至各个充电站的耗电成本和等待时间成本,为用户推荐最优的充电站选项。这种推荐机制不仅能够降低用户的充电成本,还能有序引导用户充电行为,从而在一定程度上缓解充电行为的随机性对选址定容的影响。通过这种方式,模型能够在成本最优的基础上,使充电站的布局规划与实际充电需求更好地匹配。

案例分析表明,本文提出的模型与仅考虑充电站经营者利益的选址定容方法相比,能够显著降低用户行驶至充电站的耗电量和等待时间,从而有序引导用户充电行为,缓解“有车无桩、有桩无车”的问题。这不仅提高了充电站的利用率,还提升了用户的充电体验,为充电站的可持续运营提供了有力支持。

(2) 有序用电场景下充电站运行决策模型

随着电动汽车充电负荷的不断增加,无序接入对配电网的负荷平衡和电能质量产生了显著影响,导致配电网增容和安全风险增加。为了解决这一问题,本文提出了一种有序用电场景下充电站运行决策模型,旨在通过电动汽车充电负荷的调节,实现配电网层面的削峰填谷,提升配电网负荷率,延缓系统增容。

该模型首先分析了电动汽车充电站接入对配电网在负荷平衡、电能质量和经济运行等方面的影响。通过这些分析,模型确定了优化目标,即最小化配电网的负荷峰谷差,并考虑了系统电压约束等物理约束条件。通过优化电动汽车充电负荷的调度,模型能够有效降低配电网的峰值负荷和峰谷差,提升负荷率,提高配电网设备的利用率和对电动汽车充电负荷的接纳能力。

案例分析表明,本文提出的有序用电场景下充电站运行决策模型能够显著降低配电网的峰值负荷和峰谷差,提升负荷率。优化后,节点电压得到有效控制,降低了电压越限的风险,有利于提升配电网的供电质量。这不仅有助于提高配电网的运行效率,还为电动汽车的大规模接入提供了可靠的保障。

(3) 需求响应场景下源储充一体化系统的能量优化管理模型

在需求响应场景下,源储充一体化系统的优化运行面临多重不确定性,包括源荷不确定性和电价不确定性。这些不确定性因素导致系统优化运行结果存在较大误差,难以准确量化充电站经营者的经济性风险。为了解决这一问题,本文构建了需求响应场景下源储充一体化系统的设备模型和电动汽车负荷调节模型,并基于下行风险理论,提出了考虑多级风险约束的能量优化管理模型。

该模型首先详细描述了源储充一体化系统的设备模型,包括电源、储能装置和充电站的特性。然后,构建了电动汽车负荷调节模型,通过优化充电负荷的调度,实现系统的经济运行。在此基础上,模型引入了下行风险理论,通过设置多级风险约束,为充电站经营者在不同预期风险下制定运行计划提供支持。

案例分析表明,本文提出的考虑下行风险的源储充一体化系统运行决策方法能够有效应对多种不确定性对系统运行决策的影响。通过优化电动汽车负荷的调度,模型不仅能够降低系统的运行成本,还能避免由于负荷过度调节对用户产生严重影响。此外,考虑用户收益的电动汽车负荷调节方法能够进一步提升系统的经济性和用户体验。

本文系统研究了面向多利益主体的电动汽车充电站布局规划方法、考虑配电网物理约束的电动汽车充电负荷优化调节方法和需求响应场景下考虑多种不确定性影响的源储充一体化系统经济运行策略。这些研究成果不仅能够为电动汽车充电站的布局规划提供理论指导,还能够提升电动汽车充电设施的利用率,充分发挥电动汽车充电负荷规模化接入电网的互动调节作用,促进交通电气化变革,具有重要的理论意义和工程应用价值。

 

 
import numpy as np
import pandas as pd
from scipy.optimize import minimize
from sklearn.linear_model import LinearRegression

# (1) 综合考虑充电站经营者和电动汽车用户利益的充电站选址定容模型
def optimize_charging_station_placement(user_data, station_data, cost_factors):
    """
    优化充电站选址定容模型
    :param user_data: 用户数据 (DataFrame)
    :param station_data: 充电站数据 (DataFrame)
    :param cost_factors: 成本系数 (dict)
    :return: 最优充电站选址定容方案 (DataFrame)
    """
    # 计算用户到各充电站的距离和时间成本
    distances = calculate_distances(user_data, station_data)
    time_costs = calculate_time_costs(distances)
    
    # 计算用户到各充电站的总成本
    total_costs = calculate_total_costs(distances, time_costs, cost_factors)
    
    # 为每个用户推荐最优充电站
    optimal_stations = recommend_optimal_stations(total_costs)
    
    # 计算充电站的总需求
    station_demands = calculate_station_demands(optimal_stations, user_data)
    
    # 优化充电站的定容
    optimized_capacities = optimize_station_capacities(station_demands, station_data)
    
    return pd.DataFrame({
        'Station ID': station_data['ID'],
        'Optimal Capacity': optimized_capacities
    })

def calculate_distances(user_data, station_data):
    # 计算用户到各充电站的距离
    distances = np.zeros((len(user_data), len(station_data)))
    for i, user in user_data.iterrows():
        for j, station in station_data.iterrows():
            distances[i, j] = np.sqrt((user['X'] - station['X'])**2 + (user['Y'] - station['Y'])**2)
    return distances

def calculate_time_costs(distances):
    # 计算用户到各充电站的时间成本
    time_costs = distances / 60  # 假设平均速度为60 km/h
    return time_costs

def calculate_total_costs(distances, time_costs, cost_factors):
    # 计算用户到各充电站的总成本
    energy_cost_factor = cost_factors['energy_cost']
    time_cost_factor = cost_factors['time_cost']
    total_costs = energy_cost_factor * distances + time_cost_factor * time_costs
    return total_costs

def recommend_optimal_stations(total_costs):
    # 为每个用户推荐最优充电站
    optimal_stations = np.argmin(total_costs, axis=1)
    return optimal_stations

def calculate_station_demands(optimal_stations, user_data):
    # 计算充电站的总需求
    station_demands = np.zeros(len(np.unique(optimal_stations)))
    for i, station_id in enumerate(optimal_stations):
        station_demands[station_id] += user_data.iloc[i]['Demand']
    return station_demands

def optimize_station_capacities(station_demands, station_data):
    # 优化充电站的定容
    capacities = np.zeros(len(station_data))
    for i, demand in enumerate(station_demands):
        capacities[i] = max(demand, station_data.iloc[i]['Min Capacity'])
    return capacities

# (2) 有序用电场景下充电站运行决策模型
def optimize_charging_loads(load_data, grid_constraints):
    """
    优化充电负荷调度
    :param load_data: 负荷数据 (DataFrame)
    :param grid_constraints: 配电网约束 (dict)
    :return: 优化后的充电负荷调度 (DataFrame)
    """
    def objective_function(x):
        # 目标函数:最小化负荷峰谷差
        peak_load = np.max(x)
        valley_load = np.min(x)
        return peak_load - valley_load

    def constraint_function(x):
        # 约束函数:满足系统电压约束
        voltage = calculate_voltage(x)
        return np.all(voltage >= grid_constraints['Min Voltage'])

    initial_guess = load_data['Initial Load'].values
    constraints = {'type': 'ineq', 'fun': constraint_function}
    bounds = [(0, grid_constraints['Max Load']) for _ in initial_guess]

    result = minimize(objective_function, initial_guess, method='SLSQP', bounds=bounds, constraints=[constraints])
    optimized_loads = result.x

    return pd.DataFrame({
        'Time Slot': load_data['Time Slot'],
        'Optimized Load': optimized_loads
    })

def calculate_voltage(loads):
    # 计算节点电压
    # 假设电压与负荷呈线性关系
    model = LinearRegression()
    X = loads.reshape(-1, 1)
    y = np.random.normal(1.0, 0.05, size=len(loads))  # 假设初始电压为1.0,标准差为0.05
    model.fit(X, y)
    return model.predict(X)

# (3) 需求响应场景下源储充一体化系统的能量优化管理模型
def optimize_energy_management(load_data, source_data, storage_data, risk_factors):
    """
    优化源储充一体化系统的能量管理
    :param load_data: 负荷数据 (DataFrame)
    :param source_data: 电源数据 (DataFrame)
    :param storage_data: 储能数据 (DataFrame)
    :param risk_factors: 风险系数 (dict)
    :return: 优化后的能量管理方案 (DataFrame)
    """
    def objective_function(x):
        # 目标函数:最小化运行成本
        generation_cost = np.sum(x[:len(source_data)] * source_data['Cost'])
        storage_cost = np.sum(x[len(source_data):] * storage_data['Cost'])
        total_cost = generation_cost + storage_cost
        return total_cost

    def risk_constraint(x):
        # 风险约束:控制下行风险
        expected_cost = objective_function(x)
        actual_cost = np.random.normal(expected_cost, risk_factors['Std Dev'], size=100)
        return np.mean(actual_cost <= expected_cost)

    initial_guess = np.concatenate([source_data['Initial Output'], storage_data['Initial Output']])
    constraints = {'type': 'ineq', 'fun': risk_constraint}
    bounds = [(0, source_data['Max Output']) for _ in source_data['Max Output']] + \
             [(0, storage_data['Max Capacity']) for _ in storage_data['Max Capacity']]

    result = minimize(objective_function, initial_guess, method='SLSQP', bounds=bounds, constraints=[constraints])
    optimized_outputs = result.x

    return pd.DataFrame({
        'Source ID': source_data['ID'],
        'Optimized Output': optimized_outputs[:len(source_data)]
    }, index=source_data.index).append(pd.DataFrame({
        'Storage ID': storage_data['ID'],
        'Optimized Output': optimized_outputs[len(source_data):]
    }, index=storage_data.index))

# 示例数据
user_data = pd.DataFrame({
    'ID': [1, 2, 3],
    'X': [10, 20, 30],
    'Y': [10, 20, 30],
    'Demand': [100, 150, 200]
})

station_data = pd.DataFrame({
    'ID': [1, 2],
    'X': [15, 25],
    'Y': [15, 25],
    'Min Capacity': [50, 50]
})

cost_factors = {
    'energy_cost': 0.1,
    'time_cost': 0.05
}

load_data = pd.DataFrame({
    'Time Slot': [1, 2, 3],
    'Initial Load': [100, 150, 200]
})

grid_constraints = {
    'Min Voltage': 0.95,
    'Max Load': 250
}

source_data = pd.DataFrame({
    'ID': [1, 2],
    'Max Output': [200, 300],
    'Cost': [0.1, 0.15],
    'Initial Output': [100, 150]
})

storage_data = pd.DataFrame({
    'ID': [1, 2],
    'Max Capacity': [100, 200],
    'Cost': [0.05, 0.1],
    'Initial Output': [50, 100]
})

risk_factors = {
    'Std Dev': 0.1
}

# 调用函数
optimal_placement = optimize_charging_station_placement(user_data, station_data, cost_factors)
optimized_loads = optimize_charging_loads(load_data, grid_constraints)
energy_management = optimize_energy_management(load_data, source_data, storage_data, risk_factors)

print("Optimal Charging Station Placement:\n", optimal_placement)
print("Optimized Charging Loads:\n", optimized_loads)
print("Energy Management:\n", energy_management)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值