储能系统逆变器的并网电流谐波抑制与非计划孤岛运行稳定性分析【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


主要内容如下:

(1) 三相逆变器拓扑结构与谐波抑制方法的研究 储能系统逆变器作为储能装置和电网之间的能量转换器,其拓扑结构决定了其功能和应用场景。本文首先介绍了适用于储能系统的三相逆变器拓扑,包括电压源型逆变器(VSI)和电流源型逆变器(CSI),并对比了不同拓扑在效率、控制灵活性、以及稳定性等方面的差异。为了实现高效稳定的并网,选择了三相电压源型逆变器作为主要结构,并研究了其并网电流谐波抑制方法。针对储能系统的谐波干扰问题,本文研究了基于重复控制的谐波抑制技术,通过对逆变器开环传递函数的分析,得出重复控制能有效抑制并网谐波,特别是对低频谐波具有较好的控制效果。此外,本文还探讨了逆变器接入零线对谐波特性的影响,分析了不同控制器在谐波抑制上的优劣,最终选择重复控制器作为并网谐波抑制的核心控制方法。

(2) PI-重复控制器的优化设计及谐波抑制性能提升 针对储能系统逆变器在并网时的谐波干扰问题,本文提出了一种基于PI-重复控制器的优化设计方法,旨在提高逆变器的并网电流质量。传统的PI控制器对谐波的抑制能力有限,特别是在频率变化较大时效果不理想。通过将PI控制与重复控制相结合,本文设计了一种复合控制策略,使得控制系统在应对电网扰动时能更为迅速地响应并抑制谐波。此外,为进一步增强谐波抑制效果,本文还提出了一种变比因子无源-重复控制策略。该策略通过引入动态调整的控制因子,使得谐波抑制性能得到显著提升,同时保证系统在启动和运行过程中的平稳性。通过对两种谐波抑制方案的实验对比,结果表明,所提出的优化设计在显著降低并网谐波含量的同时,还能够有效提高储能系统的稳定性和并网的平滑性。

(3) 主逆变器的平滑脱网控制与孤岛模式切换 在储能系统的主从控制架构中,主逆变器的稳定运行对于整个系统的安全至关重要。然而,在并网运行时,主逆变器可能会因外部故障或非计划的原因脱离电网,导致电压波动和功率突变。为解决这一问题,本文提出了一种非线性多模态控制器,用于实现主逆变器的平滑脱网控制。该控制器能够在检测到非计划孤岛状态时,从并网模式的电流控制切换到孤岛模式的电压控制,从而避免电压的突变和系统的不稳定性。通过对主逆变器在脱网过程中的动态行为进行分析,本文验证了非线性多模态控制器在实现平滑切换方面的有效性。此外,实验结果进一步表明,该控制策略能够显著降低因突发脱网引起的系统电压冲击,并提高系统的稳定运行能力。

(4) 孤岛并联逆变器系统的稳定性分析 当主逆变器脱网后,储能系统进入孤岛运行模式,此时并联逆变器之间的稳定性对于系统的正常运行至关重要。本文分别建立了电压型控制逆变器和电流型控制逆变器的单台阻抗模型,并基于双闭环等效系统推导了孤岛状态下并联逆变器的阻抗特性模型。通过利用该阻抗模型,本文分析了不同工况下并联逆变器的稳定性问题,得出了不同控制模式的逆变器对孤岛稳定性的影响因素。研究结果表明,电压型控制和电流型控制逆变器在孤岛状态下的交互耦合会显著影响系统的动态性能,因此需要在控制策略上进行优化,以增强系统的稳定性和抗扰能力。针对上述分析,本文还提出了一种基于阻抗匹配的孤岛稳定控制方法,通过调节逆变器的输出阻抗特性来增强系统在孤岛状态下的稳定性。

(5) 对等架构下并联逆变器的智能协调控制策略 为了实现对等架构储能系统中并联逆变器的平滑并网与脱网控制,本文提出了一种智能协调控制方案。该方案的核心思想是通过每台逆变器的自适应控制,实现并网模式与孤岛模式之间的自动切换。在并网模式下,逆变器采用跟网型控制以保证并网的稳定性;在孤岛模式下,逆变器切换为构网型控制,以保证孤岛内的电压和频率稳定。同时,本文设计了功率智能控制环和协调控制环的联合作用机制,使得逆变器能够根据实际运行状态自动调节控制参数,从而实现多模式的平滑切换。通过实验验证,所提出的智能协调控制方案能够有效应对并网和孤岛切换过程中可能出现的功率不平衡和电压波动问题,从而保证整个储能系统的多模式平滑稳定运行。

import numpy as np
import matplotlib.pyplot as plt

class InverterControl:
    def __init__(self, kp, ki, sampling_time):
        self.kp = kp
        self.ki = ki
        self.sampling_time = sampling_time
        self.integral = 0
        self.previous_error = 0

    def pi_controller(self, error):
        self.integral += error * self.sampling_time
        control_signal = self.kp * error + self.ki * self.integral
        return control_signal

    def repetitive_control(self, reference_signal, measured_signal, harmonic_table):
        error = reference_signal - measured_signal
        repetitive_signal = sum([h for h in harmonic_table]) * error
        return repetitive_signal

    def apply_control(self, reference, measured):
        error = reference - measured
        pi_output = self.pi_controller(error)
        harmonic_table = np.array([0.1, 0.05, 0.03])  # Example harmonics gain
        repetitive_output = self.repetitive_control(reference, measured, harmonic_table)
        total_output = pi_output + repetitive_output
        return total_output

# Simulation for control response
time = np.linspace(0, 10, 1000)
reference_signal = np.sin(2 * np.pi * 50 * time)
measured_signal = reference_signal + 0.1 * np.random.randn(len(time))

controller = InverterControl(kp=1.0, ki=0.5, sampling_time=0.01)
control_output = [controller.apply_control(ref, meas) for ref, meas in zip(reference_signal, measured_signal)]

plt.plot(time, reference_signal, label='Reference Signal')
plt.plot(time, measured_signal, label='Measured Signal')
plt.plot(time, control_output, label='Control Output')
plt.xlabel('Time (s)')
plt.ylabel('Signal')
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值