✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)暂态稳定评估变量间时空关联关系表征
在电力系统规模不断扩大和运行日益复杂的大背景下,暂态稳定评估中变量间时空关联关系的准确表征成为关键问题。
对于基于长短期记忆网络(LSTM)和注意力机制的暂态稳定裕度预测模型,LSTM 发挥了重要作用。电力系统中的潮流变量是一个复杂的时间序列数据集合,这些变量的变化不是孤立的,而是在时间维度上相互关联。LSTM 通过其独特的结构,能够对潮流变量的时序特征进行深入挖掘。例如,在电力传输过程中,电压、电流等潮流变量在不同时刻的数值变化存在着潜在的规律。LSTM 可以追踪这些变量在连续时间点上的动态变化,比如在一个时间段内电压的波动情况,是逐渐下降还是先上升后下降等。这种对时序特征的准确提取,为后续的暂态稳定评估提供了丰富的信息基础。
在传统深度神经网络中添加的注意力层更是为模型带来了独特的优势。注意力机制在整个模型中充当了一个敏锐的信息筛选器。在电力系统暂态稳定裕度预测的情境下,不同的输入变量在不同的运行状态下对稳定裕度的影响程度是不同的。通过注意力系数,模型能够清晰地展现出对不同输入变量的关注差异。比如在电网遭遇轻微扰动时,某些关键节点的电压变量可能对稳定裕度的影响更为关键,此时注意力层会使模型更多地聚焦于这些电压变量的信息。而当面临大规模的电力负荷变化时,电流变量的某些变化特征可能成为模型关注的重点。这种根据不同情况动态调整对变量关注程度的能力,使得模型能够更精准地利用变量信息,从而提高预测的准确性。
此外,基于级联图与时间卷积神经网络(CNGAT)的电力系统暂态稳定评估模型也有着显著的特点。图注意力网络的引入为处理输入变量间的空间关联特征表征提供了有力支持。电力系统本身具有复杂的拓扑结构,各个节点和支路之间相互连接。图注意力网络能够充分利用这种拓扑信息,挖掘出变量之间的空间关联。例如,在一个局部电网区域内,相邻节点的电压和功率之间存在着相互影响的关系,这种关系可以通过图注意力网络进行有效表征。它可以识别出哪些节点之间的联系更为紧密,哪些变量在空间上对暂态稳定有着更为重要的影响。
同时,时间卷积网络的因果膨胀卷积特性为获取变量的时序关联特征表征发挥了作用。在电力系统运行过程中,变量的时序变化不仅是简单的先后顺序,还存在着因果关系和延迟效应等复杂情况。时间卷积网络能够捕捉这些复杂的时序特征,比如在电力故障发生后的一段时间内,不同位置的变量变化存在一定的时间差和因果联系。通过因果膨胀卷积,模型可以更准确地分析这些变量在时间维度上的关联,进一步完善对暂态稳定评估所需的变量特征提取。通过这些方法对变量间时空关联关系的有效提取和表征,使得提出的暂态稳定评估模型在预测性能上得到显著提升。而且,当电网拓扑结构发生变化时,模型依然能够保持较好的性能,因为它已经充分考虑了变量在不同拓扑情况下的时空关联特征,增强了对拓扑变化的适应性和鲁棒性。
(2)暂态稳定评估模型输入和输出变量关联关系的归因表征
在暂态稳定评估模型中,清晰理解输入和输出变量之间的关联关系对于模型的应用和改进至关重要。
首先,梯度权重类激活映射(Grad - CAM)和最大化激活方法的应用为这一问题提供了新的途径。通过构建暂态稳定评估深度学习模型输入特征的热力图和最大化激活图,我们能够以一种直观的可视化方式来呈现模型输入变量和输出变量间的关联。热力图可以显示出不同输入特征在整个模型输出中的重要性分布情况。例如,在一个复杂的电力系统暂态稳定评估模型中,某些输入特征可能在模型输出暂态稳定状态为稳定或不稳定时起到关键作用。通过热力图,我们可以看到在不同的稳定评估结果下,各个输入变量的 “热度”,即它们对输出结果的影响力大小。这种可视化方法就像是给模型的黑箱打开了一扇窗,让我们能够看到内部的运行机制。
最大化激活方法则进一步强化了这种关联关系的表征。它通过特定的算法找到输入特征中能够使模型输出最大化的组合,从而更清晰地揭示哪些输入特征对神经网络的输出更为关键。比如在评估电力系统暂态稳定性时,可能存在一组特定的潮流变量组合,当它们处于某种特定状态时,模型输出的暂态稳定评估结果会达到一个极值。最大化激活方法能够帮助我们找到这样的组合,进而深入理解输入和输出之间的内在联系。
另外,基于 SHAP 框架的暂态稳定评估归因方法也有着重要意义。它能够准确地表征不同输入特征对暂态稳定评估结果的贡献分数。在电力系统中,每个输入特征都对最终的暂态稳定评估有着不同程度的影响。例如,某些关键节点的电压幅值、相角以及支路的功率传输情况等特征,它们对暂态稳定的贡献是不同的。SHAP 框架通过科学的计算方法,为每个输入特征赋予一个贡献分数,这个分数直观地反映了该特征在评估结果中的重要性。基于这些贡献分数,我们可以有针对性地对电网的潮流进行调整。如果某个特征的贡献分数显示其对暂态稳定性有较大影响且当前状态不利于稳定,我们可以采取相应的措施来改变该特征的值,从而提高电力系统的暂态稳定性。这种基于输入和输出变量关联关系归因表征的方法,为电力系统的稳定运行提供了有力的指导。
(3)数据驱动的电力系统暂态稳定变量间因果关系识别方法
准确识别电力系统暂态稳定变量间的因果关系对于深入理解电力系统运行机理和保障稳定运行具有重要意义。
首先,基于 PC - IGCI 算法和电力系统运行数据集实现暂态稳定评估变量之间的因果结构发现是一个关键步骤。传统的基于约束推断的因果结构发现方法存在马尔可夫等价类问题,这会导致因果关系的识别不够准确。而 PC - IGCI 算法则有效避免了这一问题。通过对大量的电力系统运行数据进行分析,该算法能够挖掘出变量之间深层次的因果结构。例如,在电力系统中,某些设备的故障可能会引发一系列的连锁反应,导致其他设备的运行参数发生变化,进而影响系统的暂态稳定性。PC - IGCI 算法可以从复杂的数据中梳理出这种因果链条,确定哪些变量是原因,哪些变量是结果,为后续的分析提供清晰的因果关系框架。
其次,提出基于平均因果效应(ACE)和相对平均因果效应(RACE)指标的因果效应推理方法,能够定量评价因果变量之间的作用强度。在电力系统中,因果变量之间的作用强度并不是简单的二元关系,而是存在着复杂的量化关系。比如,一个发电设备的功率变化对电网电压的影响程度是可以通过 ACE 和 RACE 指标来衡量的。这些指标能够精确地计算出一个变量的变化对另一个变量产生的影响大小,从而更深入地理解变量之间的因果关系。这对于评估电力系统在不同运行状态下的稳定性变化非常重要,因为我们可以根据这些量化的因果效应来预测系统对某些变化的响应程度。
最后,提出因果关系支持率(CSR)、因果方向不对称度(DDA)指标,并利用构建的电网运行数据子集对因果关系可靠性进行评估。电力系统的运行工况是不断变化的,这种时序变化会对变量间的因果关系产生影响。通过 CSR 和 DDA 指标,可以对因果关系在不同工况下的可靠性进行分析。例如,在高峰用电时段和低谷用电时段,相同变量之间的因果关系可能会有所不同。通过评估因果关系的可靠性,我们可以更好地了解电力系统在不同时间、不同负荷情况下的运行规律,进而为保障暂态稳定提供更全面的依据。这种数据驱动的因果关系识别方法,全面深入地挖掘了电力系统暂态稳定变量间的因果关系,为电力系统的稳定运行和管理提供了重要支持。
import torch
import torch.nn as nn
# 定义LSTM层
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# 定义注意力层(简单示例)
class AttentionLayer(nn.Module):
def __init__(self, hidden_size):
super(AttentionLayer, self).__init__()
self.attn_weights = nn.Linear(hidden_size, 1)
def forward(self, lstm_output):
attn_scores = self.attn_weights(lstm_output)
attn_weights = nn.functional.softmax(attn_scores, dim=1)
context_vector = torch.sum(attn_weights * lstm_output, dim=1)
return context_vector
# 示例数据准备(这里只是简单生成随机数据,实际需要真实电力系统数据)
input_data = torch.randn(32, 10, 5) # 假设32个样本,序列长度10,输入特征维度5
model = LSTMModel(5, 16, 2, 1)
attention_model = AttentionLayer(16)
lstm_output = model(input_data)
attention_output = attention_model(lstm_output)
print(attention_output.shape)