柔性负荷调控中异构负荷时空特性与多能耦合特性研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)居民异构柔性负荷调控技术架构与演进

在新型电力系统发展进程中,大规模新能源接入是大势所趋,与之相适应的需求侧用能结构调整对能源系统智能化发展至关重要。居民柔性负荷因具备 “灵活调度” 和 “虚拟储能” 特性而逐渐普及,这使得需求侧负荷集群调控成为消纳可再生能源、保障电力系统经济和安全运行的有力途径。然而,居民柔性负荷虽数量庞大能产生聚合效应,但因其参数众多、种类繁杂、用户行为多样等异构性问题,给聚合和调控工作带来了巨大挑战。

基于现有的负荷调控框架和技术,我们需要构建面向异构性的电力柔性负荷调控技术实施架构。深入剖析居民柔性负荷的异构性是关键的第一步。从参数方面来看,不同的居民柔性负荷有着不同的功率参数、响应时间参数等。例如,电动汽车的充电功率和充电时长范围与温控负荷的功率和调节周期完全不同。从类型上分析,涵盖了从单纯的电力负荷到冷、热等多种能源形式相关的负荷。就层次而言,不同居民家庭对这些负荷的使用频率、使用时长、使用习惯等都存在很大差别,这就导致了在调控层面上的复杂性。

这种异构性对建模和调控提出了关键需求。在建模时,需要充分考虑到这些不同参数、类型和层次的因素,以准确反映负荷的特性。在调控方面,要能适应不同负荷的特点,实现精准调控。新型电力系统的 “绿电为主” 和 “多能互补” 特征进一步影响了调控技术的发展。“绿电为主” 意味着更多的可再生能源接入,这就要求负荷调控能够适应可再生能源的间歇性和波动性。“多能互补” 则需要我们将电力负荷调控向多能负荷调控技术演进。在这个过程中,关键支撑技术不可或缺,比如多能信息交互技术、多能协调控制技术等。基于此,我们构建了以 “泛化建模” 和 “协同优化” 为主的居民异构柔性负荷调控技术框架。“泛化建模” 能够对各种异构的柔性负荷进行统一而准确的建模,“协同优化” 则可以实现不同类型、不同参数的负荷之间的协同调控,从而提升整个电力系统的运行效率和稳定性。

(2)居民异构柔性负荷的时空聚合模型

居民异构柔性负荷具有独特的时空特性,充分利用这些特性可以更好地挖掘其可调节潜力。从时间维度来看,针对电动汽车、温控负荷等典型异构柔性负荷进行动态聚合具有重要意义。以电动汽车为例,其充电时间具有一定的灵活性,不同用户在一天中的充电时间分布不同。通过分析大量电动汽车用户的充电时间数据,可以找到时间上的聚合规律。对于温控负荷,根据居民的日常作息和季节变化等因素,其在不同时间段的调节需求和调节能力也有所不同。通过对这些典型异构柔性负荷在时间上的动态聚合,可以将分散的负荷调节能力整合起来,形成更具规模的可调节资源。

从空间上,构建基于全域信息共享的电动汽车充电 “价格 - 选择” 模型是实现电动汽车空间聚合的关键。在大规模跨地区的情况下,不同地区的电动汽车用户对充电价格的敏感度不同。当存在充电价格差异时,用户会根据价格因素选择充电地点。通过建立这样的模型,可以描绘大规模跨地区电动汽车用户的充电转移过程。比如,在城市中心充电价格较高,而城市郊区充电价格较低时,一部分对价格敏感的用户可能会选择前往郊区充电。这种基于价格因素的充电选择行为,使得电动汽车在空间上形成了一种聚合效应。通过综合考虑时间和空间因素,构建考虑多时空尺度特性的异构柔性负荷聚合模型。这个模型能够更全面地挖掘需求侧居民柔性负荷的可调节潜力。它不仅仅局限于单一的时间或空间维度,而是将两者有机结合。通过对不同时空条件下的负荷特性进行分析和整合,使我们能够更精准地把握负荷的可调节范围和方式,为后续的调控策略提供更准确的依据。

(3)不同场景下异构柔性负荷的调节策略

常规调度场景下的经济运行调节策略

在常规调度场景下,异构柔性负荷具有独特的动态特性。为了实现系统调度运行的经济最优,我们首先需要构建边缘层状态空间模型。通过这个模型,可以对大规模群体的动态状态演变规律进行准确估计。在这个过程中,要考虑到不同类型异构柔性负荷在多时间尺度下的变化情况。例如,一些负荷在短时间内可能具有较大的功率波动,而另一些负荷则相对稳定,但在长时间尺度上可能会有明显的变化。通过对这些动态状态演变规律的分析,实现多时间尺度下异构负荷群体态势感知。

在此基础上,进一步分析该场景下的负荷响应方式、动态功率反弹、响应成本等特性。不同的负荷对调度指令的响应方式不同,有的可能迅速响应,有的则有一定的延迟。而且在响应过程中,可能会出现动态功率反弹现象,即负荷功率在调整后又出现反向变化。同时,不同的响应方式和调整幅度会带来不同的响应成本。基于这些特性,构建面向电力系统的经济运行场景的异构柔性负荷快速调节策略。这个策略要能够在满足系统经济运行的前提下,尽量减少功率波动和响应成本,实现负荷的高效调节,使整个电力系统在常规调度场景下达到经济最优的运行状态。

紧急甩负荷场景下的安全运行调节策略

在紧急甩负荷场景下,异构柔性负荷的动态特性同样需要重点关注。构建面向连接的负荷瞬时状态采集与校正方法是关键的第一步。在这种紧急情况下,需要对大规模柔性负荷群体的动态状态进行实时感知。由于紧急甩负荷可能会导致系统频率等参数的剧烈变化,所以准确掌握负荷的瞬时状态对于保障系统安全至关重要。通过这种采集与校正方法,可以及时获取负荷的功率、状态等信息。

进一步基于该场景下的负荷响应速率、响应功率反弹等特性构建调节策略。在紧急情况下,负荷的响应速率直接影响到系统频率的稳定。如果负荷响应过慢,可能会导致系统低频场景频率跌落深度增加,影响系统的安全运行。同时,响应功率反弹现象在这种场景下可能更加复杂和严重。通过构建面向电力系统的安全运行场景的异构柔性负荷快速调节策略,可以有效抑制系统低频场景频率跌落深度。例如,通过合理安排不同类型的柔性负荷的调节顺序和调节量,使其在紧急情况下能够迅速响应,提供必要的功率支持,从而提升系统运行安全性,保障电力系统在紧急甩负荷等极端情况下的稳定运行。

能源互联网场景下的多能耦合调节策略

在能源互联网场景下,异构柔性负荷具有多能耦合特性。以 “碳排放” 为末端多能异构负荷的调节目标具有重要意义。构建随机低碳运行模型是实现这一目标的重要手段。在这个模型中,要考虑到不同能源形式之间的相互关系以及对碳排放的影响。例如,电力的产生和使用过程中的碳排放,以及供热过程中的碳排放等。同时,还要考虑用水、供热、充电等不同维度、不同能源形式的差异化需求。居民在使用热水、供热、电动汽车充电等过程中,对能源的需求在时间、数量、质量等方面都存在差异。

基于这些因素,提出居民热水、供热、电动汽车等多能异构负荷协同优化调节策略。比如,在满足居民热水需求的同时,可以通过优化供热系统的运行方式,减少碳排放。对于电动汽车充电,可以结合电网的负荷情况和可再生能源的发电情况,选择在低碳排放的时段进行充电。通过这种协同优化调节策略,实现兼顾用户用能需求和低碳目标的热电负荷耦合响应,使能源互联网场景下的多能异构负荷能够高效、低碳地运行,促进能源系统的可持续发展。

 

# 假设这是一个简单的异构柔性负荷模拟程序

# 定义异构柔性负荷类
class HeterogeneousFlexibleLoad:
    def __init__(self, load_type, power, time_series):
        self.load_type = load_type  # 负荷类型,如电动汽车、温控等
        self.power = power  # 功率参数
        self.time_series = time_series  # 时间序列数据,表示负荷随时间的变化

# 模拟负荷聚合函数
def load_aggregation(loads):
    aggregated_power = 0
    for load in loads:
        aggregated_power += load.power
    return aggregated_power

# 模拟常规调度场景下的调节策略函数
def regular_dispatch_strategy(loads):
    # 这里简单模拟根据负荷响应成本排序
    sorted_loads = sorted(loads, key=lambda x: x.response_cost)
    for load in sorted_loads:
        # 这里假设简单的调节逻辑,实际更复杂
        load.adjust_power(load.power * 0.9) 
    return sorted_loads

# 模拟紧急甩负荷场景下的调节函数
def emergency_shedding_strategy(loads):
    fast_response_loads = [load for load in loads if load.response_rate > 0.8]
    for load in fast_response_loads:
        load.adjust_power(load.power * 1.2) 
    return fast_response_loads

# 模拟能源互联网场景下的多能耦合调节函数
def energy_internet_strategy(loads):
    # 这里简单模拟根据碳排放因子调整负荷
    for load in loads:
        if load.carbon_emission_factor > 0.5:
            load.adjust_power(load.power * 0.8) 
    return loads

# 创建一些异构柔性负荷示例
load1 = HeterogeneousFlexibleLoad('electric_vehicle', 3.5, [1, 2, 3, 4, 5])
load2 = HeterogeneousFlexibleLoad('temperature_control', 2.0, [0.5, 1, 1.5, 2, 2.5])
loads = [load1, load2]

# 执行负荷聚合
aggregated_load = load_aggregation(loads)
print("Aggregated Load Power:", aggregated_load)

# 执行常规调度策略
regulated_loads = regular_dispatch_strategy(loads)
for load in regulated_loads:
    print("Regulated Load:", load.load_type, load.power)

# 执行紧急甩负荷策略
emergency_loads = emergency_shedding_strategy(loads)
for load in emergency_loads:
    print("Emergency Load:", load.load_type, load.power)

# 执行能源互联网策略
energy_loads = energy_internet_strategy(loads)
for load in energy_loads:
    print("Energy Internet Load:", load.load_type, load.power)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值