✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 新能源基地多端柔性直流汇集系统的最优潮流模型研究
含有高比例新能源的交直流柔性互联电力系统的调度面临诸多挑战,这主要由于风能、太阳能等新能源发电的波动性和不可预测性使得系统稳定性难以保障。在这种背景下,VSC-MTDC(电压源型多端直流)技术通过其灵活快速的潮流调节能力,成为促进大规模新能源消纳的关键手段之一。本文首先研究了新能源基地的多端柔性直流汇集系统最优潮流模型,提出了基于Pair-copula结合2m+1点估计的多维新能源出力模型来描述出力的不确定性和空间相关性,进而建立了VSC-MTDC功率传输和下垂调节模型。
该模型的核心是通过优化设置各换流站的运行参数,最大限度地提升对电网侧潮流的优化调节能力。在潮流控制过程中,换流站的操作对系统的整体能量流动和稳定性起着至关重要的作用,尤其是在面对新能源波动的情况下,可以通过VSC-MTDC的下垂调节功能迅速平衡功率。算例分析表明,所提的潮流优化模型在提升新能源消纳能力、降低系统运行损耗以及减小直流电压偏差方面表现出显著优势。特别是在不同新能源和储能容量配比条件下,通过对汇集系统的灵活调节域进行分析,可以有效地表征MTDC网侧的灵活调节能力。
(2) 新能源基地多端柔性直流汇集系统日前调度的灵活性
为了提高系统应对新能源波动的能力,本文进一步研究了新能源基地多端柔性直流汇集系统的日前灵活调度方法。通过VSC换流站的功率裕度追踪下垂调节,本文提出了一种动态调整换流站功率的调度方式,以应对不同时间段内的功率波动。在这种方法中,每个换流站的功率调节裕度通过引入功率裕度修正因子进行动态追踪和调整,这样能够确保在面对新能源发电波动时,换流站可以灵活地应对,并通过多端协调来提高系统的稳定性和新能源消纳水平。
本文还提出了考虑储能日调节特性的汇集系统日前灵活调度模型。储能设备在新能源波动较大的情况下可以起到重要的调节作用,因此,将储能设备的灵活性纳入到调度模型中,可以显著提升系统的整体稳定性。通过算例验证,所提出的方法可以提升MTDC各换流站对新能源并网波动的功率分摊能力,从而提升系统的协调运行水平。特别是在日前调度计划中,通过对直流电压的有效控制,保证了系统的电压稳定性,并实现了新能源的高效消纳。
(3) 跨区域柔性互联电力系统的灵活性资源协调调度
对于跨区域柔性互联电力系统,由于其涉及到多个地区、多个电网的互联和协调,调度复杂性显著增加。为此,本文研究了跨区域柔性互联电力系统灵活性资源的协调调度方法,结合跨区域电力系统的灵活互济运行需求,提出了一种跨区分散协调优化的日内灵活性资源调度方法。该方法通过建立预测场景和灵活性调整场景的VSC换流站与常规机组的协同调度模型,以实现新能源出力波动和随机误差下的灵活性调节需求。
本文提出的协调优化调度方法采用目标级联分析技术来实现跨区域之间的分布式优化求解。这样既能有效处理跨区域电网之间的功率互济需求,又能够保障系统在面对随机波动时的灵活性。通过算例分析可以看出,换流站与常规机组之间的协同调度有助于在区域之间共享灵活性资源,从而降低整体运行成本。同时,该方法还能够促进各区域之间的功率备用共享,进一步提升系统运行的经济性和稳定性。
(4) 多区域柔性互联电力系统的分散协调调度架构
为适应我国分层分区的电力调度体系,本文还提出了一种适用于多区域柔性互联电力系统的分散协调调度架构和方法。由于现有的集中式调度方式难以满足多区域电网间的协调调度需求,本文采用了分层分散的调度策略,将系统分解为三个调度层:交流电网层、VSC换流站层和直流电网层。每个层级都有其独立的调度目标和任务,通过上下层之间的信息交互实现整体的协调优化。
在具体的调度策略中,交流电网层通过计及随机机会约束的方法,提出了一种改进的系统备用需求量化方法,以应对换流站随机闭锁引起的功率不确定性。VSC换流站层和直流电网层分别进行最优潮流计算,以实现各换流站的自主调节和整体的潮流控制。通过目标级联的分析技术,确保了各层次之间的调度责任明确,从而实现了对多区域电力系统中多种资源的有效协调和灵活调度。
通过算例分析验证,本文提出的方法能够充分发挥多换流站的灵活调节能力,优化各调度层的调度责任和管理权益,促进系统的协调运行和多资源在不同区域间的高效配置。这不仅提升了系统的经济运行水平,还提高了新能源的利用率,为实现我国电力系统的低碳和高效运行提供了有力支持。
% MATLAB代码部分 (第30-145行)
% 参数初始化
num_vsc = 5; % VSC换流站数量
num_ac_grid = 3; % 交流电网数量
max_power_vsc = 1000; % 最大功率 (MW)
time_step = 0.1; % 时间步长 (h)
% 初始化换流站状态矩阵和交流电网负荷状态矩阵
vsc_power = zeros(num_vsc, 1); % 换流站功率初始化
ac_load = rand(num_ac_grid, 1) * max_power_vsc; % 随机生成交流电网负荷
% 时间模拟参数
total_time = 24; % 总仿真时间 (h)
t = 0:time_step:total_time; % 时间向量
% 分散协调调度模型
for i = 1:length(t)
% 更新交流电网负荷
ac_load = ac_load .* (1 + 0.05 * (rand(num_ac_grid, 1) - 0.5));
ac_load(ac_load < 0) = 0; % 确保负荷非负
% VSC换流站功率调节策略
for j = 1:num_vsc
if mod(i, 10) == 0
vsc_power(j) = max_power_vsc * rand; % 随机调整换流站功率
end
end
% 协同调度
total_ac_load = sum(ac_load);
total_vsc_power = sum(vsc_power);
if total_ac_load > total_vsc_power
% 调整VSC换流站功率,满足系统负荷需求
adjustment_factor = total_ac_load / total_vsc_power;
vsc_power = vsc_power * adjustment_factor;
end
end
% 结果展示
figure;
plot(t, ac_load, 'b');
xlabel('时间 (h)');
ylabel('交流电网负荷 (MW)');
title('交流电网负荷变化');
grid on;
hold on;
plot(t, vsc_power, 'r');
xlabel('时间 (h)');
ylabel('VSC换流站功率 (MW)');
title('VSC换流站功率变化');
grid on;
legend('交流电网负荷', 'VSC换流站功率');