✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
手机作为人们日常生活中不可或缺的通讯工具和娱乐设备,其屏幕质量直接影响用户体验。然而,在手机生产过程中,屏幕可能会出现各种缺陷,如划痕、亮点、暗点等。这些缺陷不仅影响手机的外观,还可能影响其功能和使用寿命。因此,准确检测手机屏幕缺陷对于提高手机质量、降低生产成本和提升用户满意度具有重要意义。
手机屏幕缺陷检测面临着诸多挑战。一方面,手机屏幕缺陷种类繁多,形态各异,大小不一,检测难度较大。另一方面,手机屏幕缺陷检测需要在短时间内完成,以满足生产线上的高效率要求。此外,由于手机屏幕缺陷通常比较细小,需要高分辨率的检测设备和先进的检测算法才能准确检测。
二、构建手机屏幕缺陷图像数据集
(一)数据集规模和多样性
本文构建了一个包含一万张手机屏幕缺陷图像的数据集。这个数据集覆盖了不同背景条件下的样本,包括不同的光照强度、颜色、分辨率等。这样的数据集为算法的训练和验证提供了多样性和丰富性,能够使算法更好地适应不同的检测环境。
(二)数据集划分
为了充分验证改进模型的泛化性能,本文根据不同屏幕缺陷特征对数据集进行了详细划分。例如,将数据集分为划痕类、亮点类、暗点类等不同缺陷类型的子集。这样可以在训练和验证过程中分别对不同类型的缺陷进行针对性的检测和评估,从而更好地了解模型在不同缺陷类型上的性能表现。
三、改进的目标检测算法 YOLOv8-CM
(一)选择基础网络
本文选择了 YOLOv8s 作为手机屏幕缺陷检测的基础网络。YOLOv8s 是一种单阶段目标检测算法,具有速度快、精度高的特点,非常适合在移动设备上进行实时检测。
(二)替换主干网络
为了适应移动设备资源不足的限制,本文把模型的主干部分替换成了 MobileNetV3 网络。MobileNetV3 是一种轻量级的神经网络,具有参数量少、计算量小的特点,能够在移动设备上高效运行。通过替换主干网络,可以在不降低检测精度的前提下,大大减少模型的计算量和存储需求,提高模型的运行效率。
(三)引入通道注意力模块
为了解决模型对手机屏幕细小划痕的漏检问题,本文引入了通道注意力模块 CA。通道注意力模块能够自动学习不同通道的重要性,增强模型对重要特征的关注,从而提高模型对细小划痕等目标的敏感性。通过引入通道注意力模块,可以有效地提高模型对细小缺陷的检测能力,减少漏检情况的发生。
(四)采用 EIoU 作为边框回归损失函数
为了优化模型整体的缺陷检测效果,本文采用了 EIoU 作为边框回归损失函数。EIoU 损失函数能够更好地衡量预测框与真实框之间的差异,提高目标定位精度,抑制误检测,增强算法的鲁棒性。通过采用 EIoU 损失函数,可以使模型更加准确地定位手机屏幕缺陷的位置,提高检测精度。
四、实验验证与结果分析
(一)实验设置
本文在不同的实验场景中对改进的目标检测算法 YOLOv8-CM 进行了验证。实验设置包括不同的数据集划分、不同的训练参数、不同的检测环境等。通过设置不同的实验条件,可以全面评估算法的性能表现,验证其在不同情况下的可行性和有效性。
(二)关键指标评估
实验结果表明,本文提出的 YOLOv8-CM 模型在关键指标如 mAP@0.5、Precision、Recall 和 FPS 上都取得了显著的提升。
- mAP@0.5(Mean Average Precision at 0.5 IoU)是目标检测中常用的评估指标之一,它衡量了模型在不同 IoU 阈值下的平均精度。较高的 mAP@0.5 值表示模型能够准确地检测出目标,并且定位精度较高。
- Precision(精确率)是指在所有被检测为正样本的样本中,真正的正样本所占的比例。高精确率意味着模型能够准确地识别出手机屏幕缺陷,减少误报情况的发生。
- Recall(召回率)是指在所有真正的正样本中,被检测为正样本的比例。高召回率意味着模型能够尽可能地检测出所有的手机屏幕缺陷,减少漏检情况的发生。
- FPS(Frames Per Second)是指模型在每秒内能够处理的图像帧数。高 FPS 值表示模型能够在短时间内处理大量的图像,满足生产线上的高效率要求。
(三)结果分析
通过对实验结果的分析,可以得出以下结论:
- YOLOv8-CM 模型在手机屏幕缺陷检测任务中表现出了良好的性能,能够在保证检测速度的前提下,提高检测精度。
- 替换主干网络为 MobileNetV3 和引入通道注意力模块 CA 以及采用 EIoU 损失函数等改进措施,有效地提高了模型的性能表现。
- 构建的手机屏幕缺陷图像数据集为算法的训练和验证提供了有力的支持,验证了改进模型的泛化性能。
import torch
import torchvision
from torchvision.models.detection import YOLOv8
# 加载预训练的 YOLOv8s 模型
model = YOLOv8.load_pretrained('yolov8s.pt')
# 替换主干网络为 MobileNetV3
model.backbone = MobileNetV3()
# 定义通道注意力模块
class ChannelAttention(torch.nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = torch.nn.AdaptiveAvgPool2d(1)
self.max_pool = torch.nn.AdaptiveMaxPool2d(1)
self.fc1 = torch.nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out) * x
# 在模型中引入通道注意力模块
ca_module = ChannelAttention(in_channels=model.backbone.out_channels)
model.neck.add_module('channel_attention', ca_module)
# 定义损失函数
def e_iou_loss(pred_boxes, target_boxes):
# 计算 EIoU 损失函数的具体实现
return loss
# 训练模型
def train_model(model, train_loader, optimizer, criterion, epochs):
for epoch in range(epochs):
for images, targets in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
return model
# 预测手机屏幕缺陷
def detect_defects(model, image):
# 对输入图像进行预处理
processed_image = preprocess_image(image)
with torch.no_grad():
predictions = model(processed_image)
return predictions