超低速兆瓦级轴向组合盘式永磁电机的磁场分析与齿槽转矩控制及温升计算

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)超低速兆瓦级 AC - AFPMM 结构相关问题研究

在重型机械装备驱动领域,传统的异步电机加减速机模式存在诸多弊端。其结构复杂,像齿轮等减速部件不仅维护成本高,而且可靠性低。若使用常规径向磁通永磁电机直驱超低速兆瓦级传动系统,由于电机转子内部为支撑和传递机械能量需大量空间,电机体积会变得极为庞大,这就导致了制造和运输上的难题。并且,电机一旦出现问题,需整体返厂维修,这对生产进度影响极大。

针对这些问题,提出超低速兆瓦级轴向组合盘式永磁电机(AC - AFPMM)。这种电机的独特结构在于多个单定子单转子的盘式永磁电机在轴向组合,每个单定子单转子盘式永磁电机就是一个单元。通过这种方式,可依据所需功率灵活调整组合单元个数。这样就把大型电机制造转化为单元模块组合形式,用于直接驱动重型机械装备时,能提高空间利用率,简化传动系统,增强传动系统可靠性并降低维护成本。

在供电模式方面,需深入分析。不同的供电模式会影响电机的运行性能和效率,例如采用合适的多相供电可以更好地满足超低速兆瓦级电机的功率需求,并且减少电流谐波等问题。

提出定子模块化制造方法来解决大型盘式永磁电机定子加工难题。对于大型定子,传统的整体加工方式难度大、成本高且容易出现加工误差。而模块化制造方法可以将定子分成若干个小模块分别加工,然后再进行组装。这样可以在加工精度、成本控制和生产效率上都有更好的表现。

从有效空间利用率角度来看,AC - AFPMM 具有转矩密度优势。在这种轴向组合结构中,电机的空间布局更加合理,磁场分布更有利于转矩的产生。与传统电机相比,它能够在更小的空间内产生更大的转矩,这对于超低速大转矩的应用场景非常关键,能够在满足驱动要求的同时,减小电机的整体体积。

(2)超低速兆瓦级 AC - AFPMM 的磁场分析方法研究

盘式永磁电机在利用 3D 有限元法进行磁场分析时面临挑战。由于其磁场分布的复杂性,需要很高的计算机配置和大量运算时间。这对于电机的设计和优化过程是一个很大的阻碍,因为在设计过程中往往需要多次进行磁场分析来评估不同设计方案的性能。

为解决这一问题,提出一种基于气隙磁导单元的等效磁网络计算模型。这种模型通过将电机的气隙磁导划分为若干个单元,构建等效的磁网络来计算磁场。它可以在一定程度上简化计算过程,不需要像 3D 有限元法那样对整个电机空间进行详细的网格划分和复杂的计算。通过这种方式,可以在较低配置的计算机上快速得到磁场的大致分布情况,为电机设计初期的方案评估提供参考。

同时,提出一种基于改进场重建法的计算模型。这种方法是在传统场重建法的基础上进行改进,能够更准确地重建电机内部的磁场。它利用电机的一些已知物理量和边界条件,通过特定的算法来计算磁场。这种方法在保证一定计算速度的同时,提高了磁场计算的精度。

利用有限元分析对这两种模型的结果进行验证。有限元分析虽然计算复杂,但结果准确性高。通过将等效磁网络计算模型和改进场重建法计算模型的结果与有限元分析结果进行对比,可以评估这两种新模型的准确性和可靠性。如果新模型的结果与有限元分析结果相近,就说明它们可以在实际设计中替代有限元分析,或者作为有限元分析的前期辅助工具,提高设计效率。

(3)超低速兆瓦级 AC - AFPMM 的设计与相关优化分析

超低速兆瓦级 AC - AFPMM 组合单元数量的选取是电机设计的关键。不同的单元数量会对电机的多个性能产生重大影响。当盘式永磁电机单元数量变化时,电机的电磁成本会改变。单元数量增加,虽然可能会增加电机的功率,但同时也会增加材料成本、制造工艺成本等。例如,更多的单元需要更多的永磁体、绕组等材料,而且组装过程也会更复杂。

转矩密度也会受到单元数量的影响。合适的单元数量可以使电机在有限的空间内产生更高的转矩。这与电机的磁场分布、单元之间的相互作用等因素有关。如果单元数量选择不当,可能会导致磁场耦合不佳,从而降低转矩密度。

效率方面,单元数量的变化会影响电机的电磁损耗。不同数量的单元会使电机内部的磁场分布和电流分布不同,进而影响铜损、铁损等。合适的单元数量可以优化这些损耗,提高电机的效率。

极数选择也与单元数量相关。不同的单元数量可能需要不同的极数来保证电机的性能。例如,较多的单元可能需要更多的极数来实现更好的磁场分布和转矩输出。

结合电机的模态分析和机械强度校核等内容来总结电机的整体设计方法。模态分析可以确定电机在不同振动模式下的频率和振型,避免电机在运行过程中发生共振。机械强度校核则确保电机的各个部件在承受转矩、离心力等机械载荷时不会发生损坏。通过这些分析,可以确定电机的结构尺寸、材料选择等设计参数,保证电机在超低速大转矩运行条件下的可靠性和稳定性。

针对大型盘式永磁电机容易存在的偏心问题,分析不同偏心状态下电机气隙长度的解析计算和对应的电磁力变化规律。偏心问题会导致气隙长度不均匀,进而影响电机的磁场分布和电磁力。通过解析计算气隙长度的变化,可以进一步分析电磁力在不同偏心位置和程度下的变化情况。这对于预测电机在偏心情况下的性能变化和制定相应的补偿措施非常重要。

(4)超低速兆瓦级 AC - AFPMM 齿槽转矩的优化方法研究

推导超低速兆瓦级 AC - AFPMM 的齿槽转矩解析表达式是优化齿槽转矩的基础。齿槽转矩是永磁电机中由于永磁体与定子齿槽之间的相互作用产生的,它会引起电机的转矩脉动,影响电机的运行平稳性。通过解析表达式,可以清楚地了解齿槽转矩与电机的结构参数、永磁体参数等因素之间的关系。

利用永磁体错位安装方法削弱齿槽转矩。当永磁体错位安装时,永磁体与定子齿槽之间的相互作用会发生改变。通过合理选择错位安装角度,可以使不同位置的齿槽转矩相互抵消或减弱。例如,在一些特定的错位角度下,相邻永磁体产生的齿槽转矩的峰值和谷值可以相互补偿,从而降低整体的齿槽转矩。

双面永磁体对称斜极也是一种有效的方法,包括以内径为基准斜极和以外径为基准斜极两种模式。在对称斜极情况下,永磁体的磁极方向沿一定角度倾斜。以内径为基准斜极时,磁极倾斜方向是根据定子内径来确定的,这种方式可以改变磁场在气隙中的分布,从而减少齿槽转矩。同样,以外径为基准斜极也有类似的原理,但由于基准不同,对磁场的调整效果也有所差异。通过调整斜极角度,可以找到最佳的齿槽转矩削弱效果。

双面永磁体不对称斜极同样可以起到削弱齿槽转矩的作用。不对称斜极可以在不同程度上改变磁场在不同位置的分布,进一步优化齿槽转矩的削弱效果。与对称斜极相比,它提供了更多的调整自由度。

通过解析方法计算出各种方法的理论最佳错位安装角度或斜极角度并进行验证。利用数学模型和理论分析,可以得出在不同条件下的最佳角度值。然后通过实验或者更精确的仿真来验证这些理论值的准确性。同时,研究不同方法对电机转矩输出能力的影响。因为在削弱齿槽转矩的同时,不能过度影响电机的正常转矩输出。需要找到一个平衡点,既能有效降低齿槽转矩,又能保证电机的转矩输出能力满足驱动要求。

(5)超低速兆瓦级 AC - AFPMM 的温升分布及温升计算问题研究

分析电机沿径向和轴向的温升分布规律对于电机的热管理至关重要。在超低速兆瓦级电机运行过程中,由于电流通过绕组产生焦耳热,以及铁心中的磁滞和涡流损耗等原因,电机内部会产生热量。沿径向方向,由于不同位置的散热条件和热生成情况不同,温升会有差异。例如,靠近绕组的位置由于电流热效应明显,温升可能较高,而靠近外壳的位置散热相对较好,温升较低。在轴向方向,不同的盘式永磁电机单元之间的热传递和散热情况也不同,这会导致轴向温升分布的变化。

结合温升分析结果设计超低速兆瓦级 AC - AFPMM 的冷却系统。根据温升分布规律,可以确定哪些区域是散热的关键部位。例如,如果某个区域温升过高,就需要在该区域增加冷却通道或者提高冷却效率。冷却系统可以采用风冷、水冷或者其他合适的冷却方式。对于风冷,可以设计合理的风道和风扇布局,使冷空气能够有效地带走电机内部的热量。对于水冷,则需要设计合适的水冷管道布局,确保冷却液能够流经高温区域,实现高效散热。

基于热网络思想建立超低速兆瓦级 AC - AFPMM 的温升计算模型。热网络模型将电机内部看作一个由热阻、热容等热元件组成的网络。通过分析不同部件之间的热传递关系,建立热平衡方程,从而可以快速准确地计算电机的温升。这种模型可以在电机设计阶段就对电机的温升情况进行预测,避免在实际运行中出现过热问题,同时也可以用于优化冷却系统的设计。

(6)超低速兆瓦级 AC - AFPMM 的设计与实验验证

设计一台水泥磨机直驱用超低速兆瓦级 AC - AFPMM,其额定功率为 1600kW、额定转速为 30r/min,采用四个相同的盘式永磁电机单元在轴向组合。在设计过程中,综合考虑前面提到的各种因素,如结构设计、磁场分析、设计优化、齿槽转矩优化和温升控制等。根据水泥磨机的负载特性和运行要求,确定电机的各项参数,如定子和转子的尺寸、永磁体的参数、绕组的匝数和线径等。

对所设计的超低速兆瓦级 AC - AFPMM 进行性能仿真。通过仿真可以全面评估电机的性能,包括电磁性能、机械性能和热性能等。在电磁性能方面,可以分析电机的磁场分布、转矩输出、反电动势等。在机械性能方面,评估电机的振动模态、临界转速等,确保电机在运行过程中不会出现共振等问题。在热性能方面,利用温升计算模型预测电机在不同负载和运行时间下的温升情况,验证冷却系统的设计是否合理。通过这些仿真结果,验证文章所提电机及设计方法、磁场计算方法及温升计算模型的合理性和正确性。

研制一台 60kW 的样机,由两个相同的盘式永磁电机单元在轴向组合而成,并进行样机的实验研究。在实验过程中,测量电机的实际性能参数,如实际输出转矩、转速、电流、电压、温升等。将这些实验结果与理论分析和仿真结果进行对比。如果实验结果与理论和仿真结果相符,就可以进一步验证所提出的设计方法、分析方法等的有效性。例如,如果实验测得的齿槽转矩与理论计算的齿槽转矩优化结果一致,就说明齿槽转矩优化方法是正确的。通过实验研究,可以对电机的设计和分析进行更深入的验证和改进。

 

# 盘式永磁电机单元类
class DiskPMMotorUnit:
    def __init__(self, stator_parameters, rotor_parameters, pm_parameters, winding_parameters):
        self.stator_parameters = stator_parameters
        self.rotor_parameters = rotor_parameters
        self.pm_parameters = pm_parameters
        self.winding_parameters = winding_parameters
        # 初始化电机单元的基本参数,如定子尺寸、转子尺寸、永磁体参数、绕组参数等

# 计算电机单元的电感函数(简化示例)
def calculate_inductance(unit):
    # 这里假设简单的电感计算方法,实际更复杂
    stator_area = unit.stator_parameters['area']
    number_of_turns = unit.winding_parameters['turns']
    magnetic_permeability = 4 * 3.14 * 1e - 7
    length = unit.stator_parameters['length']
    return (number_of_turns ** 2 * magnetic_permeability * stator_area) / length

# 计算电机单元的电阻函数(简化示例)
def calculate_resistance(unit):
    wire_resistance_per_unit_length = 0.1  # 假设每单位长度导线电阻
    winding_length = unit.winding_parameters['length']
    return wire_resistance_per_unit_length * winding_length

# 计算电机单元的反电动势函数(简化示例)
def calculate_back_emf(unit, rotational_speed):
    flux_linkage = calculate_flux_linkage(unit)  # 假设存在计算磁链的函数
    return -1 * flux_linkage * rotational_speed

# 计算电机单元的电磁转矩函数(简化示例)
def calculate_electromagnetic_torque(unit, current):
    flux_density = calculate_flux_density(unit)  # 假设存在计算磁通密度的函数
    length = unit.stator_parameters['length']
    return flux_density * current * length

# 基于气隙磁导单元的等效磁网络计算模型函数(简化示例)
def equivalent_magnetic_network_model(motor_units):
    total_magnetic_flux = 0
    for unit in motor_units:
        # 计算每个单元的气隙磁导和磁通量,这里简化计算
        airgap_permeance = calculate_airgap_permeance(unit)  # 假设存在计算气隙磁导的函数
        magnetic_flux_unit = unit.pm_parameters['magnetization'] * airgap_permeance
        total_magnetic_flux += magnetic_flux_unit
    return total_magnetic_flux

# 基于改进场重建法的计算模型函数(简化示例)
def improved_field_reconstruction_model(motor_units):
    reconstructed_field = []
    for unit in motor_units:
        # 利用电机单元的参数重建磁场,这里简化计算
        field_component = [unit.pm_parameters['magnetization'] / 2 for _ in range(10)]  # 假设简单的磁场分布
        reconstructed_field.extend(field_component)
    return reconstructed_field

# 计算不同偏心状态下气隙长度函数(简化示例)
def calculate_airgap_length_with_eccentricity(unit, eccentricity):
    nominal_airgap_length = unit.stator_parameters['airgap']
    return nominal_airgap_length + eccentricity * unit.stator_parameters['radius']

# 计算偏心状态下电磁力变化函数(简化示例)
def calculate_electromagnetic_force_with_eccentricity(unit, current, eccentricity):
    airgap_length = calculate_airgap_length_with_eccentricity(unit, eccentricity)
    flux_density = calculate_flux_density(unit)  # 假设存在计算磁通密度的函数
    return flux_density * current * airgap_length

# 齿槽转矩计算函数(简化示例)
def calculate_cogging_torque(unit):
    # 这里假设简单的齿槽转矩计算方法,实际根据推导的解析表达式计算
    stator_teeth_number = unit.stator_parameters['teeth_number']
    pm_magnetization = unit.pm_parameters['magnetization']
    return pm_magnetization ** 2 * stator_teeth_number * 0.1  # 简化计算

# 永磁体错位安装下齿槽转矩计算函数(简化示例)
def calculate_cogging_torque_with_misaligned_pm(unit, misalignment_angle):
    original_cogging_torque = calculate_cogging_torque(unit)
    # 假设错位安装会按一定比例减少齿槽转矩,这里简化计算
    return original_cogging_torque * (1 - misalignment_angle / 180)

# 双面永磁体对称斜极(以内径为基准)下齿槽转矩计算函数(简化示例)
def calculate_cogging_torque_with_inner_diameter_skewed_pm(unit, skew_angle):
    original_cogging_torque = calculate_cogging_torque(unit)
    # 假设斜极会按一定三角函数关系减少齿槽转矩,这里简化计算
    return original_cogging_torque * math.cos(skew_angle)

# 双面永磁体对称斜极(以外径为基准)下齿槽转矩计算函数(简化示例)
def calculate_cogging_torque_with_outer_diameter_skewed_pm(unit, skew_angle):
    original_cogging_torque = calculate_cogging_torque(unit)
    # 假设斜极会按一定三角函数关系减少齿槽转矩,这里简化计算
    return original_cogging_torque * math.sin(skew_angle)

# 双面永磁体不对称斜极下齿槽转矩计算函数(简化示例)
def calculate_cogging_torque_with_asymmetric_skewed_pm(unit, skew_angle1, skew_angle2):
    original_cogging_torque = calculate_cogging_torque(unit)
    # 假设不对称斜极按更复杂关系减少齿槽转矩,这里简化计算
    return original_cogging_torque * (math.cos(skew_angle1) + math.sin(skew_angle2))

# 径向温升分布计算函数(简化示例)
def calculate_radial_temperature_rise(unit, heat_source_power, radial_position):
    thermal_resistance_radial = calculate_thermal_resistance_radial(unit, radial_position)  # 假设存在计算径向热阻的函数
    return heat_source_power * thermal_resistance_radial

# 轴向温升分布计算函数(简化示例)
def calculate_axial_temperature_rise(unit, heat_source_power, axial_position):
    thermal_resistance_axial = calculate_thermal_resistance_axial(unit, axial_position)  # 假设存在计算轴向热阻的函数
    return heat_source_power * thermal_resistance_axial

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值