✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)为了应对现代电力系统日益增长的动态复杂性和不确定性,本文提出了一种基于虚拟区域特征值的数据驱动小干扰稳定评估方法。该方法旨在利用大数据技术的优势,克服传统小干扰稳定评估方法中对于详尽时变模型的过度依赖,从而提高评估的效率、准确性和实时响应能力。首先,在样本数据的高效生成方面,本文开发了一套创新性的方案,该方案结合了阻尼比灵敏度分析与自适应搜索步长策略,能够有效地生成具有高信息熵的运行点。这不仅减少了所需样本的数量,降低了计算资源的消耗,同时也确保了样本的质量和多样性,为后续的数据驱动模型训练提供了坚实的基础。此外,为了解决大电力系统中运行状态空间维度过高导致的“维度灾难”问题,本文还提出了基于关键线路和灵敏度分析的场景及参数筛选方法,进一步优化了样本生成过程,提升了整体效率。
(2)基于上述高效生成的样本数据,本文创新地提出了利用虚拟区域特征值进行小干扰稳定评估的方法。这一方法的核心思想是放弃对单个特征值精确位置的追求,而是将注意力转移到特征值分布的宏观区域上,通过定义一系列虚拟区域来表征系统的稳定状态。这种方法不仅显著降低了计算成本,满足了工程应用中的实时性要求,而且通过引入Mean-shift算法来评估区域划分的合理性,保证了评估结果的准确性和可靠性。为了解决不同运行状态下关键特征值数量不确定的问题,本文设计了一种复合的长短期记忆(LSTM)网络结构,该网络能够根据输入数据的特性自动调整其内部结构,从而更好地捕捉系统动态特性的变化,提高了小干扰稳定评估的精度。
(3)鉴于电力系统中存在的大量不确定性因素,如可再生能源发电量的波动和负荷需求的变化等,传统的确定性评估方法往往难以全面准确地反映系统的实际运行状况。为此,本文进一步发展了一种基于数据驱动的概率性评估模型。该模型同样基于虚拟区域特征值的概念,通过构建深度神经网络实施分位数回归,能够有效处理风电和负荷双重不确定性下的特征值预测问题。具体而言,该模型能够为每个虚拟区域内的特征值生成一个置信区间,进而通过核密度估计技术获得特征值的概率分布函数。基于此,本文提出了一个新的稳定性概率指标,该指标不仅能够量化系统处于不稳定状态的可能性,而且还为电力系统的预防控制措施提供了宝贵的参考依据。最后,考虑到电力系统运行场景的持续变化可能会影响数据驱动模型的长期性能,本文提出了一种自适应的部分更新策略。该策略通过计算新旧数据之间的相似度,智能选择需要更新的数据子集,从而在保持模型准确性的同时最大限度地减少了在线更新过程中的计算开销和延迟。此外,通过引入基态点概念,该策略还能够在单个更新周期内进一步提升模型对特定关键特性的学习效果,增强了小干扰稳定评估的整体性能。
import numpy as np
from sklearn.cluster import MeanShift
from keras.models import Sequential
from keras.layers import LSTM, Dense
from scipy.stats import gaussian_kde
def generate_samples(sensitivity, adaptive_step):
# 样本生成函数,使用阻尼比灵敏度和自适应搜索步长生成样本
samples = []
current_point = [0] * len(sensitivity) # 初始化起始点
while True:
# 计算当前点的阻尼比灵敏度
damping_ratio = calculate_damping_ratio(current_point)
if damping_ratio < threshold: # 设置阈值判断是否继续采样
break
samples.append(current_point)
for i in range(len(current_point)):
current_point[i] += adaptive_step * sensitivity[i]
return samples
def calculate_damping_ratio(point):
# 假设函数,用于计算某一点的阻尼比
return np.random.uniform(0.1, 1.0)
def virtual_region_evaluation(samples):
# 使用MeanShift算法进行区域划分
clustering = MeanShift(bandwidth=2).fit(samples)
labels = clustering.labels_
cluster_centers = clustering.cluster_centers_
# 对每个区域内的特征值进行评估
for label, center in zip(set(labels), cluster_centers):
region_samples = [samples[i] for i in range(len(samples)) if labels[i] == label]
# 进一步处理,例如计算平均阻尼比等
pass
def build_lstm_model(input_shape):
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=input_shape))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
return model
def probabilistic_assessment(model, data, num_samples=1000):
predictions = [model.predict(np.array([data])) for _ in range(num_samples)]
kde = gaussian_kde(predictions)
x = np.linspace(min(predictions), max(predictions), 100)
probability_distribution = kde(x)
return x, probability_distribution
# 示例:生成样本数据
sensitivity = [0.2, -0.1, 0.3] # 阻尼比灵敏度示例
adaptive_step = 0.05
samples = generate_samples(sensitivity, adaptive_step)
# 区域评估
virtual_region_evaluation(samples)
# 构建LSTM模型
input_shape = (1, len(samples[0]))
lstm_model = build_lstm_model(input_shape)
# 概率评估
x, prob_dist = probabilistic_assessment(lstm_model, samples[0])
# 自适应部分更新策略
def adaptive_partial_update(new_data, old_data, model):
similarity = calculate_similarity(new_data, old_data)
if similarity < update_threshold:
# 更新模型
pass
def calculate_similarity(data1, data2):
# 计算两组数据的相似度
return np.linalg.norm(np.array(data1) - np.array(data2))
update_threshold = 0.1
new_data = [1, 2, 3] # 新数据点
old_data = [1.1, 2.1, 3.1] # 旧数据点
adaptive_partial_update(new_data, old_data, lstm_model)