半经验模型与理论模型结合的轮胎动力学侧偏纵滑耦合研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 侧倾与侧向力耦合的接地印迹高精度建模

本文首先提出了一种计及侧倾和侧向力耦合的高精度接地印迹建模方法,用于描述在转偏输入条件下轮胎动力学特性的变化。通过建立转偏、侧偏、纵滑以及侧倾输入的精细化离散理论模型,解决了现有非稳态求解方法在转偏非线性变形特征和力与力矩计算中的收敛性问题,实现了理论模型与实验的一致性表达。研究还揭示了带束在侧向力和回正力矩作用下的侧向变形规律,包括不同侧向力水平和胎宽、倾角的影响。研究表明,不同大小的侧向力或回正力矩作用下,带束的侧向变形高度重合,验证了带束侧向变形叠加原理的正确性。

此外,本文提出了改进几何法的接地印迹模型,能够有效考虑侧倾输入的静态接地形状的高精度表达。通过试验验证了等效侧倾方法可以满足理论模型在描述侧向力耦合动态印迹方面的精度需求,同时提出了一种基于欧拉法的轮胎变形离散求解方法,实现在稳态与非稳态条件下的统一求解。研究过程中构建了力与力矩的计算矩阵方程,并提出了改进理查德森迭代法,用以解决数值收敛性问题,最终实现了在不同迭代策略下模型求解的稳定性。研究结果显示,0°及6°静态接地印迹、纯侧倾、0°及±5°倾角侧偏准稳态和非线性侧偏角阶跃实验与理论模型的结果具有较好的一致性。

(2) 转偏与侧偏耦合模型及其稳态特性分析

在研究转偏与侧偏输入下轮胎稳态力学特性变化规律和机理的基础上,本文提出了一种高精度的稳态半经验模型,明确了能够全面描述稳态力学特性的建模对象与基本式。以侧向力随侧偏角的变化为研究对象,本文基于魔术公式中的三角函数表达构建了基本式,详细研究了不同载荷和转偏率对侧偏角水平偏移、曲率和刚度参数的影响,建立了稳态侧向力半经验模型。

对于回正力矩,本文将其随转偏率的变化视为纯侧偏产生的力矩在转偏率曲线下发生的不对称衰减。通过对不同载荷和侧偏角对基本式的刚度及曲率参数影响规律的研究,建立了转偏与侧偏耦合下回正力矩的半经验模型。对于纵向力,本文采用了改进的魔术公式余弦表达式来描述纵滑与转偏输入之间的耦合效应,并对不同载荷和滑移率对模型自变量比例和指数参数的影响进行了详细分析。最终,通过离散理论模型验证了模型误差的收敛情况,并通过实验验证所建稳态模型在侧向力和回正力矩计算中的误差较传统PAC2002模型分别降低了7.09%和4.32%。

(3) 转偏非稳态非线性响应特性的建模与分析

本文进一步探讨了轮胎在转偏输入下的非稳态非线性动力学特性,揭示了其在路程和空间频率上的响应特征。通过构建空间频率简化响应系统,并基于解析模型和简化系统理论边界条件的一致性,本文得到了系统参数,从而建立了高精度的转偏非稳态半经验模型。与PAC2002非稳态模型相比,该模型仅需较少的参数即可实现更优的描述能力。

在对附着状态对胎面单元侧向变形的影响研究中,本文发现当起滑点未超过接地印迹中心位置时,胎面侧向变形呈现近似对称分布,且侧向力在初始路程阶段的响应梯度较为缓慢,而回正力矩则在响应过程中出现峰值。此外,研究表明带束平移刚度对侧向力和回正力矩的频率响应特性具有重要影响,而扭转刚度主要对高附着状态下回正力矩的超调量产生影响。基于这些研究,本文基于线性非稳态频响特性构建了简化系统,推导出了简化系统模型参数,并将模型扩展到非线性表达,验证了转偏非稳态回正力矩可以不考虑带束扭转刚度的假设。

最后,通过离散理论模型验证表明,由于本文基于理论边界条件得到模型参数,相比于PAC2002,以更少的模型参数实现了更优的表达。实验结果显示,本文所建非稳态模型在侧向力和回正力矩的误差分别较PAC2002模型降低了1.68%和3.56%。

(4) 转偏非稳态试验方法及仿真验证

本文提出了一种适用于转偏非稳态模型参数辨识的试验方法。在每个载荷测试的起始与终止阶段,均保留了一段自由滚动状态,使得侧偏角及转偏率输入均为零,而力及力矩处于由轮胎锥度和角度效应引起的稳态值。这种控制方法使得实验数据能够更加精准地匹配非稳态模型的参数辨识需求。

通过使用Matlab Simulink的Parameter Estimator模块,本文实现了转偏侧偏耦合输入下半经验模型的参数辨识与验证。结果表明,本文所建立的模型在侧向力和回正力矩的平均误差较改进后的PAC2002模型分别降低了8.78%和7.88%。此外,本文还完成了Adams与Matlab仿真结果的对比验证,证明了所开发接口的准确性。整车仿真结果显示,考虑转偏输入对驻车和转向轻便性工况下方向盘力矩与转角曲线的影响显著,验证了所建模型在整车应用中的有效性。

 

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# 基本的魔术公式模型定义
def magic_formula(alpha, B, C, D, E):
    return D * np.sin(C * np.arctan(B * alpha - E * (B * alpha - np.arctan(B * alpha))))

# 参数辨识函数
def identify_parameters(alpha_data, force_data):
    initial_guess = [1.0, 1.0, 1.0, 0.0]
    params, covariance = curve_fit(magic_formula, alpha_data, force_data, p0=initial_guess)
    return params

# 侧偏角数据和相应侧向力数据示例
alpha_data = np.linspace(-10, 10, 50)
force_data = magic_formula(alpha_data, 1.2, 1.3, 400, 0.1) + np.random.normal(0, 5, len(alpha_data))

# 参数辨识
params = identify_parameters(alpha_data, force_data)
B, C, D, E = params
print(f"Identified Parameters: B={B}, C={C}, D={D}, E={E}")

# 绘制辨识结果与原始数据对比
plt.scatter(alpha_data, force_data, label='Original Data')
plt.plot(alpha_data, magic_formula(alpha_data, *params), color='r', label='Fitted Model')
plt.xlabel('Slip Angle (alpha)')
plt.ylabel('Lateral Force (Fy)')
plt.legend()
plt.title('Magic Formula Parameter Identification')
plt.grid(True)
plt.show()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值