✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)对标车有限元模型建立与分析
汽车轻量化对于节能减排以及实现 “碳达峰” 和 “碳中和” 目标意义重大,同时也是提升汽车经济性、动力性和制动性能的关键技术路径。不过,这一过程受车身结构 NVH 特性和抗撞性的限制。车身质量在汽车整备质量中占比较大,约为 30% - 40%,所以车身轻量化是汽车轻量化的重要组成部分。以高强度钢、铝合金、碳纤维复合材料等高强、轻质材料混合用于汽车车身是未来车身轻量化的发展趋势。然而,多材料车身轻量化正向开发极为复杂,涉及零部件选材、车身梁骨架概念设计和异种材料连接等多方面,目前还缺乏系统性的设计方法。因此,选材、车身梁骨架概念设计以及其结构 - 连接 - 性能优化匹配是多材料车身正向开发的关键技术,也是研究热点和难点。
以某小型乘用车车身为研究对象,首先要建立对标模型。以某量产小型乘用车作为对标车,建立其钢制白车身有限元模型,并搭建对标整车 100% 正面碰撞与侧面碰撞有限元模型。为确保模型的准确性,通过实车碰撞试验来验证所建有限元模型。之后,对对标钢制车身进行多方面的仿真分析,包括弯曲刚度、扭转刚度、一弯一扭模态频率、正碰与侧碰结构抗撞性能等。这些性能指标对于后续多材料概念车身的正向研发至关重要,它们将作为技术目标来指导整个设计过程。通过这些分析,可以全面了解对标钢制车身在各种工况下的力学性能表现,为多材料车身的轻量化设计提供参考依据。例如,弯曲刚度和扭转刚度反映了车身在承受弯曲和扭转载荷时的抵抗能力,模态频率则与车身的振动特性相关,而正碰与侧碰抗撞性能直接关系到车辆在碰撞时对乘客的保护能力。这些指标的提取和分析为后续的多材料车身设计提供了量化的目标和方向,使设计能够朝着满足或超越对标车性能的方向发展。
(2)多材料车身轻量化选材决策方法
提出一种结构力学性能驱动的多材料车身轻量化选材决策方法,这一方法包含三个重要子系统。
第一,建立多材料车身轻量化选材决策准则。针对车身薄壁梁在不同变形范畴内的力学性能,即线弹性小变形与塑性大变形两个方面,采用数值解析法进行深入分析。研究结构弯扭刚度、弯扭强度、轴向平均压溃力、横向失稳弯矩或失稳力等力学性能与结构质量、断面形状、尺寸参数以及材料属性之间的内在关联机制。在此基础上,分别建立六种结构力学性能驱动的轻量化材料指数,并联合材料价格作为选材决策准则。这种准则的建立是基于对车身结构力学性能的深入理解,通过量化各种因素之间的关系,为选材提供科学依据。例如,在考虑弯扭刚度时,要分析不同材料和结构参数如何影响车身在弯曲和扭转工况下的刚度表现,从而确定在满足刚度要求的前提下,哪些材料和结构更有利于轻量化。
第二,提出耦合层次分析与模糊层次分析的车身轻量化选材质量功能展开赋权方法。通过这种方法,可以确定车身不同位置零部件的力学性能设计要求。在实际的车身结构中,不同位置的零部件所承受的载荷和功能要求各不相同,比如车身前纵梁在碰撞时需要承受较大的冲击力,而车顶部分则更关注其抗压和抗扭性能。通过这种赋权方法,可以准确地确定每个零部件的关键力学性能指标权重,进而求解多材料车身轻量化选材决策准则的权重。这样就能根据不同零部件的特点,更合理地选择材料,使材料的选择更符合实际的使用需求。
第三,采用灰色关联分析对车身零部件备选材料综合性能进行多准则决策,确定最佳的车身零件材料。以车身前纵梁轻量化选材为例,这种方法可以综合考虑多种因素,如材料的力学性能、成本、可加工性等。通过灰色关联分析,可以将各个备选材料与理想材料的性能进行对比,找出与理想材料关联度最高的材料作为最佳选择。对所提方法的具体应用进行详细论述,并对选材效果进行评价与验证,确保选材方法的科学性和有效性,从而为多材料车身的轻量化设计提供可靠的材料选择方案。
(3)多材料车身梁骨架概念设计与多维度协同优化
提出一种多材料车身梁骨架概念设计方法。首先建立概念车身梁骨架简化结构有限元模型,然后应用前面提出的选材决策方法实现概念车身梁骨架不同部位零部件的轻量化选材。在此基础上,重点研究多材料概念车身薄壁梁复杂断面设计方法,提出一种多材料概念车身薄壁梁复杂断面多层次匹配优化设计方法。
在第一层,优化概念车身薄壁梁简化断面,使其迅速满足概念车身梁骨架性能设计要求。这一步通过对简化断面的形状、尺寸等参数进行调整,提高薄壁梁在初步设计阶段的性能。在第二层,针对不同材质结构的成型工艺特点,建立钢制薄壁梁复杂断面形状库。通过多工况联合拓扑优化设计确定铝制薄壁梁复杂断面形状,并求解薄壁梁复杂断面力学特性。以断面力学特性为桥梁,解决多材料概念车身薄壁梁简化断面向复杂断面匹配转换的难题。不同材料的薄壁梁在成型工艺上有很大差异,例如钢制薄壁梁和铝制薄壁梁的加工方法和工艺限制不同,通过这种方式可以充分考虑这些因素,实现不同材料薄壁梁断面的合理设计。在第三层,建立比例向量控制的复杂断面精细优化方法,通过节点坐标旋转比例缩放实现复杂断面形状改变的数字化精准控制。这种方法为复杂断面轻量化优化设计提供了新途径,可以更精细地调整断面形状,进一步减轻重量。通过这种多层次递进式的断面匹配转换与优化,完成多材料复杂断面薄壁梁设计,进而搭建概念车身梁骨架模型并进行性能分析。经过验证,所建立的具有实际复杂断面的多材料概念车身梁骨架相较于初始多材料概念车身梁骨架质量降低明显,减重比达 6.9%,且各项性能指标均满足设计要求,充分证明了所提方法的有效性。
完成多材料概念车身梁骨架结构 - 连接 - 性能多维度协同优化设计。采用理论分析、仿真计算与试验测试等方法,研究异种材料自冲铆接(SPR)接头力学性能与失效机理,建立概念车身梁骨架中异种材料结构 SPR 接头简化模型。SPR 接头在多材料车身连接中起着关键作用,其力学性能和失效机理直接影响车身的整体性能。提出铆钉集合编码技术,解决 SPR 接头参数在优化过程中无法自动更新的问题,并综合运用模型参数化与网格变形技术构建概念车身梁骨架参数化多目标优化模型。通过这些技术手段,可以更方便地对模型进行优化。采用贡献度分析与试验设计相结合的方法筛选出优化设计变量,构建概念车身梁骨架 RBFNN - Kriging 混合代理模型,联合 NSGA - II 优化算法,完成概念车身梁骨架结构 - 连接 - 性能多维度自动迭代优化,获得 Pareto 前沿。最后,采用 AHP - TOPSIS 法对 Pareto 前沿进行数据挖掘,选取最佳优化方案。经过优化,概念车身梁骨架的弯扭刚度、模态频率等性能指标有显著提升,质量大幅降低,实现了显著的轻量化效果。将优化后的最佳设计变量重新赋予到概念车身梁骨架有限元模型,并对其进行基本静、动态性能、正碰与侧碰抗撞性能的仿真分析,性能指标均满足设计要求。根据多材料概念车身梁骨架的设计和优化结果,研制概念车身梁骨架前端结构样件,并进行正面碰撞试验。通过对比前端结构正面碰撞仿真分析结果与试验结果,验证了本文提出的多种设计方法的有效性,为多材料车身轻量化设计提供了可靠的技术支持和实践依据。
# 假设我们有材料库,每种材料有不同的属性,这里简化为力学性能属性和价格属性
materials_library = {
"material1": {"elastic_modulus": 200, "yield_strength": 300, "price": 50},
"material2": {"elastic_modulus": 150, "yield_strength": 250, "price": 40},
# 更多材料...
}
# 假设我们有车身零部件列表,每个零部件有其位置和受力要求等信息
body_parts = [
{"name": "front_rail", "location": "front", "loading_requirements": "high_impact"},
{"name": "roof_beam", "location": "top", "loading_requirements": "compression_and_torsion"},
# 更多零部件...
]
# 建立选材决策准则函数
def decision_criteria(material, part):
# 这里简单示例,根据不同零部件要求计算材料指数
if part["loading_requirements"] == "high_impact":
material_index = material["yield_strength"] / material["price"]
elif part["loading_requirements"] == "compression_and_torsion":
material_index = material["elastic_modulus"] / material["price"]
return material_index
# 耦合层次分析与模糊层次分析的赋权函数(这里简化模拟)
def weighting_method(part):
# 根据零部件位置等因素确定权重
if part["location"] == "front":
weight = 0.8
elif part["location"] == "top":
weight = 0.6
return weight
# 灰色关联分析函数(这里简化实现)
def grey_relation_analysis(materials, part):
reference_material = {"elastic_modulus": 300, "yield_strength": 400, "price": 30} # 理想材料属性
grey_relations = []
for material in materials:
# 计算灰色关联度(简单距离计算示例)
distance_elastic_modulus = abs(material["elastic_modulus"] - reference_material["elastic_modulus"])
distance_yield_strength = abs(material["yield_strength"] - reference_material["yield_strength"])
distance_price = abs(material["price"] - reference_material["price"])
grey_relation = 1 / (distance_elastic_modulus + distance_yield_strength + distance_price)
grey_relations.append(grey_relation)
return grey_relations
# 选材主函数
def material_selection():
for part in body_parts:
candidate_materials = list(materials_library.values())
material_indices = [decision_criteria(material, part) for material in candidate_materials]
weights = [weighting_method(part)] * len(candidate_materials)
weighted_indices = [index * weight for index, weight in zip(material_indices, weights)]
grey_relations = grey_relation_analysis(candidate_materials, part)
# 综合考虑指标选择材料(这里简单示例,选择综合得分最高的材料)
best_material_index = weighted_indices.index(max(weighted_indices))
selected_material = candidate_materials[best_material_index]
print(f"Selected material for {part['name']}: {selected_material}")
if __name__ == "__main__":
material_selection()