混合动力商用车多目标协调控制与Lyapunov稳定性分析【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)PSHCV建模及验证

首先,对EVT+2AMT结构的PSHCV的工作模式进行深入分析,明确其在不同工况下的动力流分配特性。接着,采用前向建模的仿真方法完成整车模型搭建,确保模型能够准确反映实际车辆的动态行为。在此基础上,针对发动机最优工作点对应的系统效率并非最优的问题,建立不同模式下的系统效率模型,并设计基于系统效率最优的能量管理策略,同时提取发动机工作点及换挡规则。最后,将所建立的模型以及所设计的控制算法进行仿真及实车测试验证,与发动机最优能量管理策略进行对比,验证模型及控制策略的有效性,为后续控制策略的研究奠定基础

(2)PSHCV纵向分层协调控制策略

考虑到客车频繁加减速的工况特性,以效率为导向的PSHCV通常需要频繁换挡才能控制在高效区,换挡冲击势必会影响驾驶舒适性和燃油经济性。为此,本研究提出一种基于速度预测的实时多目标优化的导向型模型预测控制策略(RMGMPC)。首先,考虑驾驶员不同的驾驶习惯,结合多源数据融合技术,建立车速预测控制器;其次,基于全局优化算法设计了SOC参考发生器,在线实现预测车速的SOC引导;然后,为了实时协调燃油效率和换挡频率,提出一种基于直接多靶法和序列二次规划算法的RMGMPC求解算法;最后,为避免经验值不确定对MPC权重系数的影响,结合全局优化理论与层次分析法确定车辆性能指标的权重系数。通过标准工况以及实车数据验证了所提出的RMGMPC策略的优异性能

(3)考虑不确定动态干扰的半车主动悬架自适应控制策略

针对PSHCV行驶过程中,尤其是在城区行驶时,车辆会出现频繁加/减速,必然引起车身俯仰运动,影响主动悬架系统(ASS)原有的控制性能。为解决悬架系统不确定动态干扰,提出一种自适应有限时间高阶滑模主动悬架控制系统(AFHASS)方法。首先,建立一种有限时间控制ASS方法,实现了系统的快速收敛,可以抑制干扰;其次,考虑执行器不连续输入引起的控制系统抖振问题,设计有限时间高阶滑模ASS,提高控制精度;然后,针对现有控制算法估计约束边界的问题,基于有限时间控制理论和滑模控制技术,结合在线自适应控制理论在未知干扰下的优势,提出AFHASS,并采用Lyapunov稳定性理论证明其稳定性;最后,以有限时间控制ASS方法为基准,验证AFHASS算法有效性,仿真结果表明其具有良好的鲁棒性,抑制了执行器输出抖振,并且可以兼顾悬架系统的能耗和舒适性

(4)考虑多系统耦合特性的多目标优化协调控制策略

为了改善PSHCV乘坐舒适性和能量回收效率,针对制动工况,提出考虑多系统耦合特性的多目标优化协调控制策略。首先,针对制动工况,分析功率分流混合动力车辆多系统耦合特性,建立整车多系统耦合模型,旨在准确揭示其耦合机理;其次,为进一步改善车辆的能量回收效率,结合ECE制动法规,设计基于耦合模型的模糊控制器对混合动力系统控制;然后,在耦合模型的基础上,结合考虑动态干扰的主动悬架系统控制算法和制动力模糊控制器,提出一种多系统耦合的经济性与舒适性协调优化控制算法,并采用不同制动工况对其仿真验证,验证模型的控制效果

(5)硬件在环(HIL)试验平台验证

为验证所提出的RMGMPC、AFHASS以及多目标协调控制策略的实时性,基于dSPACE/Simulator以及快速原型控制器,搭建硬件在环(HIL)试验平台进行验证。分别在CCBC工况,C级随机路面和复合制动工况下,验证所设计的控制策略的实时性

 

 
% 假设变量
SOC = 0.5; % 初始SOC
velocity = 30; % 初始车速
engineEfficiency = 0.3; % 发动机效率
motorEfficiency = 0.9; % 电机效率

% 能量管理策略模拟
function [SOC, enginePower, motorPower] = energyManagement(SOC, velocity, engineEfficiency, motorEfficiency)
    demandedPower = velocity^2; % 根据车速计算需求功率
    enginePower = max(0, demandedPower - motorEfficiency * batteryPower); % 发动机提供剩余功率
    motorPower = min(batteryPower, demandedPower); % 电机提供功率
    SOC = SOC - (motorPower / batteryCapacity); % 更新SOC
end

% 模拟一天的驾驶循环
for i = 1:100 % 假设100个时间步
    [SOC, enginePower, motorPower] = energyManagement(SOC, velocity, engineEfficiency, motorEfficiency);
    % 更新车速或其他参数
    velocity = velocity + randn() * 5; % 随机变化车速
end

% 输出结果
fprintf('Final SOC: %f\n', SOC);
fprintf('Average Engine Power: %f\n', mean(enginePower));
fprintf('Average Motor Power: %f\n', mean(motorPower));

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值