✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 复合工况下分布式驱动电动汽车失稳机理分析
复合工况下,车辆面临着多种驾驶场景,例如紧急制动和急转弯等,这使得传统车辆稳定性控制技术面临着巨大的挑战。基于轮毂电机的分布式驱动电动汽车由于具备四轮独立扭矩控制的优势,在复合工况下可以灵活地调节每个车轮的动力输出,有利于提升整车的操控性能。然而,复合工况下由于侧偏力和纵向滑移力的强烈耦合作用,使得车辆的动力学特性变得更加复杂,失稳机理不再仅限于侧偏失稳,而是包含了纵向与侧向力的共同影响。复合工况下的失稳不仅影响车辆的操控稳定性,还会增加车辆的翻车风险。
通过对复合工况下的车辆动力学模型进行分析,首先建立了基于简化的复合工况动力学模型,研究车辆在不同的输入条件下的失稳机理,探索侧向力和纵向力在不同组合工况下的相互作用。采用李雅普诺夫稳定性理论进行稳定性分析,结合操纵图(Handling Diagram)对复合工况下的稳定区域进行了描述,分析了输入条件变化对车辆稳定区域的影响。结果表明,复合工况下车辆的稳定区域大大缩小,并且在急剧的侧向和纵向操作中,车辆更容易突破稳定边界,进入失稳状态。此外,车辆的稳定性也受到轮胎非线性特性的显著影响,轮胎的侧向刚度随着轮胎载荷变化而改变,使得失稳风险增加。
考虑到这些复杂性,本文提出了前后轮侧偏角相平面鞍点位置方程,以及基于动力学模型的定量稳定性评价指标,用于有效衡量复合工况下车辆的稳定裕度。通过这一方法,可以为后续控制策略的设计提供理论支持,确保车辆在不同工况下保持良好的稳定性。
(2) 操纵稳定性控制方法设计
在复合工况下,分布式驱动电动汽车的操纵稳定性控制面临的关键挑战是如何在车辆失稳的风险增大的情况下,实现稳定与操控性能的平衡。本文提出了一体化的底盘控制系统,涵盖了车辆“侧向-纵向-垂向”耦合作用的综合控制框架,通过整合各个方向的动力学特性,提升操纵控制的鲁棒性和适应性。
首先,基于复合工况的UniTire轮胎模型建立了一种面向控制的轮胎特性描述方法,以应对轮胎在复合工况下的强非线性特性。通过引入有效侧偏刚度的概念,将侧向力和纵向力的耦合关系纳入控制模型,使得控制器在应对复杂工况时具备更高的精度。其次,基于七自由度车辆动力学模型,结合复合工况的轮胎模型,建立了车辆的状态空间模型,用于描述车辆在复合工况下的动态响应。
为了实现车辆操纵性和稳定性的协同控制,设计了一种基于模型预测控制(MPC)的控制器。在控制器设计中,将车辆的操纵性控制、稳定性控制以及四轮滑移率控制作为目标进行集中优化,确保车辆在复合工况下具备最佳的操稳性能。此外,为了增强控制器在不同行驶工况下的适应能力,本文提出了一种基于稳定性指标和轮胎滑移率的自适应权重调整策略。当车辆处于稳定状态时,控制器将以操纵性为主要控制目标,提升驾驶体验和操控响应;而当车辆即将进入失稳状态时,控制器则将以稳定性为首要控制目标,确保车辆的安全性。这种自适应控制策略能够在不同行驶工况下动态调整控制目标,使车辆在不同工况下都能达到最佳的性能表现。
(3) 控制策略验证与仿真分析
为了验证所提出的控制策略的有效性,本文进行了大量的仿真与实车试验。首先,进行了双移线工况的仿真测试,比较了固定权重与自适应权重控制方案的效果。结果表明,自适应权重策略在操纵性和稳定性方面的表现显著优于固定权重控制方案。通过自适应调节权重,车辆的质心侧偏角被有效地控制在合理范围内,横摆力矩需求得到降低,车辆的操纵稳定性得到了明显改善。此外,采用自适应控制策略后,车辆在转向负荷和轮胎滑移率方面也有显著的改善,从而提升了整体的驾驶体验和安全性。
在制动与转向复合工况的仿真测试中,采用基于复合工况UniTire轮胎模型的MPC控制器,进一步验证了控制策略在复杂工况下的有效性。结果显示,控制器能够在制动转向复合工况下实现合理的四轮力矩分配,使得在车辆状态控制效果相当的情况下,附加横摆力矩的需求明显减小,四轮的滑移率也被控制在较低范围内。这一结果充分说明了所设计控制器在面对复合工况时的优越性。
最后,本文还进行了基于实车的试验验证。采用东风E70实车平台,对质心侧偏角观测算法和操纵稳定性控制算法进行了实车测试。在不同附着条件下,包括高附着路面、低附着路面及极限工况下,质心侧偏角观测算法表现出了良好的精度和可靠性,能够实现车辆质心侧偏角的准确估计。而操纵稳定性控制算法则在复合工况下成功实现了车辆的稳定控制,辅助驾驶员在复杂工况下保持车辆的操纵稳定性。这些实车实验结果表明,所提出的控制策略在实际工况中具有良好的适用性和可靠性。
通过对复合工况下的失稳机理分析、操纵稳定性控制设计以及仿真与实车验证,本文提出了一种系统性的控制策略,有效地提升了分布式驱动电动汽车在复合工况下的稳定性和操控性能。这一研究不仅为分布式驱动电动汽车的控制策略提供了新的思路,也为未来智能电动汽车在复杂交通环境下的安全与稳定控制提供了理论和实践支持。
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
# Parameters definition
time_horizon = 10 # Prediction horizon
delta_t = 0.1 # Time step
# Vehicle and controller parameters
m = 1500 # Vehicle mass in kg
Iz = 2250 # Yaw moment of inertia in kg·m^2
Cf = 80000 # Front tire cornering stiffness in N/rad
Cr = 80000 # Rear tire cornering stiffness in N/rad
L_f = 1.2 # Distance from CG to front axle in m
L_r = 1.6 # Distance from CG to rear axle in m
# State-space matrices for lateral dynamics
A = np.array([[0, 1, 0, 0],
[0, -(Cf + Cr) / (m * 10), (Cf + Cr) / m, (L_r * Cr - L_f * Cf) / (m * 10)],
[0, 0, 0, 1],
[0, (L_r * Cr - L_f * Cf) / (Iz * 10), -(L_f**2 * Cf + L_r**2 * Cr) / (Iz * 10), 0]])
B = np.array([[0],
[Cf / m],
[0],
[L_f * Cf / Iz]])
# MPC optimization function
def mpc_control(state, ref):
def cost_function(u):
next_state = A @ state + B * u[0]
error = ref - next_state
cost = np.sum(error**2) + 0.1 * u[0]**2
return cost
# Initial guess and bounds for optimization
u0 = [0]
bounds = [(-10, 10)] # Control bounds
result = minimize(cost_function, u0, bounds=bounds)
return result.x[0]
# Simulation setup
time = np.arange(0, 10, delta_t)
states = []
control_inputs = []
# Initial state
state = np.array([0, 0, 0, 0])
ref_state = np.array([1, 0, 0.1, 0]) # Reference state for lane keeping
# Simulation loop
for t in time:
u = mpc_control(state, ref_state)
state = A @ state + B * u
states.append(state)
control_inputs.append(u)
# Plotting results
plt.figure()
plt.plot(time, [s[0] for s in states], label='Lateral Position')
plt.plot(time, [s[2] for s in states], label='Yaw Angle')
plt.xlabel('Time (s)')
plt.ylabel('State Values')
plt.legend()
plt.title('Vehicle State Response under MPC Control')
plt.grid()
plt.show()