✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
1. 坐姿人体有限元建模
本文围绕坐姿人体舒适性展开研究,利用参数识别方法确定人体生物力学参数,建立可以预测人体振动响应特征的坐姿人体有限元模型。具体研究内容如下:
-
人体生物力学参数的确定:
- 参数识别方法:在人体有限元建模过程中,人体生物力学参数的确定是一个关键问题。本文采用灵敏度分析和多目标优化方法来确定这些参数。灵敏度分析用于评估各个参数对目标函数的影响,多目标优化则用于寻找最优参数组合。
- 参数选择:选择了15个参数进行分析,包括人体软组织参数、关节刚度和关节阻尼等。通过灵敏度分析,筛选出7个影响较大的参数作为设计变量。
- 多目标优化:构建了近似模型,并使用多目标优化算法进行求解,最终确定了模型软组织和关节参数。这些参数能够使模型的动态等效质量、脊椎传递函数和人体模态与实验数据高度吻合。
-
人体有限元模型的建立:
- 模型结构:参考HybridⅢ假人模型,建立了一个考虑人体关节和软组织参数、身高为175 cm、体重为68.6 kg的人体有限元模型。模型包括头部、颈部、躯干、四肢等主要体段。
- 模型验证:通过对人体模型的体段质量进行验证,确保模型的准确性。以人体动态等效质量仿真数据与实验数据的均方根误差为目标,验证了模型的动态响应特性。
- 模型应用:将所建立的坐姿人体有限元模型用于人体传递函数预测和人体模态分析。分析结果与参考文献中的试验或仿真结果吻合较好,证明了模型的有效性。
2. 腰椎有限元建模
为了建立能够反映振动激励下腰椎真实动力学响应的有限元模型,本文基于Poser软件中的人体解剖学和人体测量学数据库,结合放射学研究成果对腰椎模型姿势进行调整,建立了包含腰椎坐姿人体有限元模型。具体研究内容如下:
-
腰椎几何模型:
- 模型构建:基于Poser软件中的人体解剖学和人体测量学数据库,获取了详细的腰椎几何模型。模型包括椎体、髓核、纤维环、胶原纤维、软骨终板和韧带等结构。
- 姿势调整:结合放射学研究中腰椎前凸角测量结果,对腰椎模型姿势进行调整,使其符合人体解剖学特征。调整后的模型能够更准确地反映腰椎的真实动力学响应。
-
模型验证:
- 验证方法:通过计算椎间盘内压、关节活动度和腰椎第一阶垂向共振频率,对腰椎模型进行了验证。将计算结果与参考文献中的实验或仿真数据进行对比,验证了模型的准确性。
- 不同靠背支撑:依据医学上X射线测量得到的腰椎关节前凸角,对不同座椅靠背角下的腰椎姿势进行调整,并与坐姿人体有限元模型结合,得到不同座椅靠背支撑条件下的坐姿人体有限元模型。
- 验证结果:通过对比参考文献中测量所得到的动态等效质量和腰椎传递函数,对10°、20°、30°靠背支撑下的坐姿人体有限元模型进行了验证。验证结果表明,模型能够准确预测不同靠背支撑条件下的腰椎生物动力学响应。
-
生物动力学响应预测:
- 预测内容:基于所建立的坐姿人体有限元模型,实现了全身振动条件下10°、20°、30°靠背支撑下腰椎的生物动力学响应的预测。预测内容包括椎间压缩力、椎间盘内压、纤维环应力以及软骨终板应力。
- 预测结果:计算结果表明,不同靠背支撑条件下的腰椎生物动力学响应存在显著差异。这些结果为座椅设计提供了重要参考,有助于优化座椅的支撑结构,提高驾乘人员的舒适性和安全性。
3. 振动激励下的体压分布研究
为了利用垂向振动激励下的体压分布表征泡沫座椅上坐姿人体的舒适性,本文基于振动激励下的主观评价和体压分布试验,提出了动态工况下的体压分布指标,并建立了与主观舒适性之间的联系。具体研究内容如下:
-
试验设计:
- 试验对象:选取12名受试者进行试验,受试者年龄、性别和身体状况均符合试验要求。
- 试验条件:设计了不同振动加速度均方根值(0.2、0.4、0.6、0.8、1.0、1.2 m/s²)下的试验条件,每种条件重复进行多次试验,确保数据的可靠性。
- 数据采集:使用高精度体压分布测量系统,采集受试者在不同振动条件下的体压分布数据。同时,采用相对幅值法对不同振动激励强度下的泡沫座椅不舒适度进行主观评价。
-
数据分析:
- 体压分布指标:提出了平均压力变化率均方根和法向力变化率均方根两个体压分布指标,用于表征振动激励下的体压分布特性。
- 主客观关联性分析:利用史蒂文斯幂定律对主客观测试结果进行了关联性分析,确立了主客观指标之间的联系。分析结果表明,体压分布指标与主观不舒适度之间存在显著的相关性。
- 模型验证:将提出的体压分布指标应用于实车座椅振动舒适性的评价之中,进一步验证了体压分布在评价汽车座椅振动舒适性时的适用性。
-
不同泡沫属性的影响:
- 试验设计:以12名受试者为对象,进行垂向振动下3种硬度、4种厚度泡沫的体压分布测试试验。
- 数据分析:利用非参数统计方法分析了聚氨酯泡沫厚度和硬度属性对垂向振动激励下体压分布的影响。分析结果表明,不同硬度和厚度的泡沫对体压分布有显著影响,为汽车座椅舒适性设计提供了参考。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import linregress
# 读取体压分布数据
data = pd.read_csv('pressure_data.csv')
# 提取关键列
pressure = data['pressure'].values
force = data['force'].values
vibration_level = data['vibration_level'].values
subjective_comfort = data['subjective_comfort'].values
# 计算平均压力变化率均方根
def calculate_rms(x):
return np.sqrt(np.mean(x**2))
pressure_rms = [calculate_rms(pressure[vibration_level == level]) for level in np.unique(vibration_level)]
# 计算法向力变化率均方根
force_rms = [calculate_rms(force[vibration_level == level]) for level in np.unique(vibration_level)]
# 绘制体压分布指标与振动水平的关系图
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(np.unique(vibration_level), pressure_rms, marker='o')
plt.xlabel('Vibration Level (m/s²)')
plt.ylabel('Pressure RMS')
plt.title('Pressure RMS vs Vibration Level')
plt.subplot(1, 2, 2)
plt.plot(np.unique(vibration_level), force_rms, marker='o')
plt.xlabel('Vibration Level (m/s²)')
plt.ylabel('Force RMS')
plt.title('Force RMS vs Vibration Level')
plt.tight_layout()
plt.show()
# 主客观关联性分析
slope_pressure, intercept_pressure, r_value_pressure, p_value_pressure, std_err_pressure = linregress(pressure_rms, subjective_comfort)
slope_force, intercept_force, r_value_force, p_value_force, std_err_force = linregress(force_rms, subjective_comfort)
print(f"Pressure RMS vs Subjective Comfort: R-value = {r_value_pressure}, P-value = {p_value_pressure}")
print(f"Force RMS vs Subjective Comfort: R-value = {r_value_force}, P-value = {p_value_force}")
# 绘制主客观关联性图
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.scatter(pressure_rms, subjective_comfort, color='blue')
plt.plot(pressure_rms, slope_pressure * np.array(pressure_rms) + intercept_pressure, color='red', label=f'R-value = {r_value_pressure:.2f}')
plt.xlabel('Pressure RMS')
plt.ylabel('Subjective Comfort')
plt.legend()
plt.title('Pressure RMS vs Subjective Comfort')
plt.subplot(1, 2, 2)
plt.scatter(force_rms, subjective_comfort, color='green')
plt.plot(force_rms, slope_force * np.array(force_rms) + intercept_force, color='red', label=f'R-value = {r_value_force:.2f}')
plt.xlabel('Force RMS')
plt.ylabel('Subjective Comfort')
plt.legend()
plt.title('Force RMS vs Subjective Comfort')
plt.tight_layout()
plt.show()