智能汽车人机共驾场景下驾驶能力与习性分析的个性化决策方法研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 面向人因属性表征及评估的系统激励及场景构建理论及测试方法

为了有效评估驾驶人的驾驶能力和驾驶习性,本研究构建了一套面向人因属性表征及评估的系统激励及场景构建理论及测试方法。首先,我们设计了包括系统激励型、微观场景型及自然驾驶型在内的“V”字型测试流程。系统激励型场景主要通过周期性和突变性的激励信号来模拟真实驾驶环境中可能遇到的各种情况,如突然出现的障碍物或路面湿滑等。这些激励信号的选择需考虑到其对驾驶人反应速度、决策准确性等方面的影响,以便更全面地评估驾驶人的能力。

在微观场景型测试中,我们利用耦合车辆运动模型与车路可行驶区域的空间拓扑结构,构建了一个能够揭示人-车-路三者之间互动机制及协同规律的虚拟随机车路场模型。这一模型不仅可以帮助研究人员深入了解不同驾驶行为模式下的车辆动态特性,还为后续的驾驶习性分析提供了重要参考。此外,为了确保测试结果的准确性和可靠性,我们还建立了一套完整的自然驾驶测试系统及方法,涵盖了从系统配置到测试规程的各个环节。该系统支持高精度、多维度的数据采集,同时保证了测试场景的一致性,为后续的深度学习和数据分析打下了坚实的基础。

(2) 驾驶能力概念及评估方法

在明确了驾驶人的人因属性后,如何科学合理地对其进行量化评估成为了实现个性化人机共驾策略的关键。为此,本研究提出了“驾驶能力”这一概念,将其定义为驾驶人随外界环境负荷变化而对车辆渐变的把控能力。这一能力是个人驾驶习性、驾驶技能及驾驶状态等人因属性元素的综合体,具有明显的时变、非线性及动态特性。基于此,我们采用了Hammerstein模型来建立驾驶能力辨识模型,并通过主成分分析法对模型中的关键参数进行了解耦和降维处理,简化了模型结构,提高了计算效率。

为了进一步细化驾驶能力的分类,我们采取了客观蚁群聚类与主观量表分析相结合的方法,实现了对驾驶能力的多层次分类。在此基础上,运用多元线性回归分析法计算得到了驾驶能力评价方程,为后续的实际应用提供了理论支撑。通过在典型激励场景和虚拟微观场景中的多次测试与验证,证明了所提出的驾驶能力评估方法不仅能够准确反映驾驶人的实际水平,还具有较高的实用性和推广价值。

(3) “类我”属性表征及评估方法

考虑到每个人都有独特的驾驶习惯和偏好,本研究进一步探讨了如何通过“类我”属性来实现更加个性化的驾驶体验。我们将驾驶习性定义为驾驶人相对稳定的、习惯性的内在行为倾向,是不同个体间存在显著差异的心理思维和行为模式的综合体。为了准确捕捉这些特性,我们设计了一套包含特征提取、离线评估、在线数据仲裁及在线评估在内的“类我”属性表征及评估框架。

具体来说,我们首先通过主客观相结合的分类方式对驾驶习性进行了初步划分,并利用多维高斯隐马尔科夫过程建立了辨识模型。随后,通过正交试验优化了模型参数,构建了一个包含最优内参组合的离线辨识模型。在实际应用中,该模型能够根据驾驶人的实时操作数据快速判断其当前的驾驶状态,并据此调整车辆的控制策略。为了确保“类我”属性评估的准确性和及时性,我们还开发了一种基于车辆运动意图的交通态势辨识模型,用于在线数据仲裁,以及一种基于驾驶习性的在线辨识模型,用于实时评估驾驶人的行为倾向。

最后,基于上述研究成果,我们设计了一种包含驾驶权仲裁子系统及“类我”“机驾”子系统的人机共驾策略。该策略能够在动态驾驶任务中,让“人驾”与“机驾”子系统通过实时调整驾驶权分配系数共享对车辆的控制权。具体而言,驾驶权仲裁子系统会根据驾驶人的当前能力和状态自动决定是否需要接管车辆控制;而“类我”“机驾”子系统则负责根据驾驶人的习惯和偏好调整车辆的行为模式,确保驾驶体验既安全又舒适。

为了验证这一策略的有效性,我们在模拟器平台和实车平台上分别进行了大量测试。测试结果表明,与传统的仅依赖“人驾”或“机驾”的模式相比,所提出的人机共驾策略不仅能够显著提高驾驶安全性,还能大幅提升驾驶人的满意度。特别是在复杂场景下,如城市拥堵路段或恶劣天气条件下,该策略的优势尤为明显。

 

# 示例代码 - 驾驶权仲裁子系统
class DrivingAuthorityArbitrationSystem:
    def __init__(self):
        self.driver_ability = 0.0
        self.vehicle_control = 0.0  # 0表示完全由驾驶员控制,1表示完全由系统控制
    
    def update_driver_ability(self, ability_score):
        # 更新驾驶员的能力评分
        self.driver_ability = ability_score
    
    def decide_control_authority(self):
        # 根据驾驶员的能力评分决定控制权分配
        if self.driver_ability < 0.5:
            # 如果驾驶员能力较低,增加系统控制权重
            self.vehicle_control = min(1.0, self.vehicle_control + 0.1)
        else:
            # 如果驾驶员能力较高,减少系统控制权重
            self.vehicle_control = max(0.0, self.vehicle_control - 0.1)
    
    def get_control_authority(self):
        return self.vehicle_control

# 示例代码 - “类我”“机驾”子系统
class PersonalizedMachineDrivingSystem:
    def __init__(self, arbitration_system):
        self.arbitration_system = arbitration_system
        self.driver_habits = {}
    
    def update_driver_habits(self, habits):
        # 更新驾驶员的习惯信息
        self.driver_habits.update(habits)
    
    def adjust_vehicle_behavior(self):
        # 根据驾驶员的习惯调整车辆行为
        if 'aggressive' in self.driver_habits and self.driver_habits['aggressive']:
            # 如果驾驶员习惯激进驾驶,调整加速和刹车策略
            self.adjust_aggressive_driving()
        elif 'cautious' in self.driver_habits and self.driver_habits['cautious']:
            # 如果驾驶员习惯谨慎驾驶,调整安全距离和速度控制
            self.adjust_cautious_driving()
    
    def adjust_aggressive_driving(self):
        # 激进驾驶的调整逻辑
        pass
    
    def adjust_cautious_driving(self):
        # 谨慎驾驶的调整逻辑
        pass

# 示例代码 - 驾驶能力评估
def assess_driver_ability(data):
    # 使用Hammerstein模型评估驾驶能力
    model = HammersteinModel()
    ability_score = model.predict(data)
    return ability_score

class HammersteinModel:
    def predict(self, data):
        # 模型预测逻辑
        # 假设已经训练好了模型
        return 0.7  # 示例返回值

# 示例代码 - 驾驶习性特征提取
def extract_driver_habits(data):
    # 提取驾驶人的习惯特征
    features = {
        'speed_variation': calculate_speed_variation(data),
        'braking_frequency': calculate_braking_frequency(data),
        'steering_angle': calculate_steering_angle(data),
        # 更多特征...
    }
    return features

def calculate_speed_variation(data):
    # 计算速度变化
    pass

def calculate_braking_frequency(data):
    # 计算刹车频率
    pass

def calculate_steering_angle(data):
    # 计算转向角度
    pass

# 示例代码 - 在线数据仲裁
def online_data_arbitration(current_data, historical_data):
    # 根据当前数据和历史数据进行在线数据仲裁
    if is_consistent(current_data, historical_data):
        return current_data
    else:
        return historical_data

def is_consistent(current_data, historical_data):
    # 判断当前数据与历史数据是否一致
    pass

# 示例代码 - 在线评估
def online_assessment(current_data):
    # 在线评估驾驶人的行为倾向
    habits = extract_driver_habits(current_data)
    return habits

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值